
Diplomarbeit

A Policy-Free System-Call Layer
for the Hedron Microhypervisor

Philipp Schuster
Matr-Nr.: 4506091

01. April 2022

Technische Universität Dresden
Fakultät Informatik

Institut für Systemarchitektur
Professur Betriebssysteme

1. Hochschulbetreuer: Dr.-Ing. Nils Asmussen
2. Hochschulbetreuer: Prof. Dr.-Ing. Horst Schirmeier

Betrieblicher Betreuer: Dipl.-Inf. Julian Stecklina

Selbstständigkeitserklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen
als die angegebenen Hilfsmittel benutzt habe.

Dresden, den 01. April 2022

Philipp Schuster

Danksagung
Ich möchte mich recht herzlich bei allen Menschen bedanken, die mich beim Er-
stellen dieser Arbeit in jedweder Form unterstützt haben. Dieser Dank gilt ins-
besondere der ganzen Cyberus Technology GmbH und meinem Vorgesetzten Tor
Lund-Larsen, die mir das Thema dieser Diplomarbeit im Wesentlichen ermöglicht
haben. Ganz besonderer Dank darüber hinaus geht an meinen betrieblichen Betreu-
er Julian Stecklina. Außerdem möchte ich mich bei meinem universitären Betreuer
Dr. Nils Asmussen für seine gute Unterstützung bedanken. Obendrein gilt mein
Dank meinen Freunden, meiner WG, meiner Familie, meinen Kommilitonen und
allen sonstigen Menschen, die meine Studentenzeit zur bisher besten Zeit meines
Lebens gemacht haben.

Aufgabe

Gegenstand dieser Arbeit ist das Design und die Implementierung eines generi-
schen Mechanismus, der die Ausführung von Hybrid- und unmodifizierten Fremd-
anwendungen unter dem Mikrokern Hedron, einem Fork von NOVA, ermöglicht.
Fremdanwendungen sind Programme, die gegen eine für Hedron fremde System-
aufrufschicht entwickelt wurden. Hybride Anwendungen beinhalten darüber hinaus
zusätzlich Hedron-native Systemaufrufe, die sich von den fremden Systemaufrufen
unterscheiden. Unmodifiziert bedeutet, dass die für das Fremdsystem kompilierten
Anwendungen nicht nachträglich für Hedron angepasst werden müssen und somit
eine Binärkompatibilität besteht.

Es soll untersucht werden, inwieweit eine erhöhte Produktivität beim Entwickeln
neuer Software für Hedron erreicht werden kann, wenn man dafür beispielsweise die
existierenden Toolchains für Linux benutzt. Das soll dem Mehraufwand durch eine
Toolchainanpassung für das Entwickeln von Software für Hedron gegenübergestellt
werden. Die generelle Funktionstüchtigkeit des Systems soll mit der erfolgreichen
Ausführung einfacher unter Hedron laufender Linux-Programme, wie einem Da-
teisystemmikrobenchmark, aufgezeigt werden. Zudem sollen die Auswirkungen auf
die Performance der fremden Systemaufrufe untersucht werden. Die Lösung soll
entsprechend der Mikrokernphilosophie keine Policy im Kern implementieren. Im
Kern wird nur der minimal notwendige Mechanismus realisiert, alles andere liegt
in der Verantwortung der Laufzeitumgebung im User Space.

7

Kurzfassung

Das Entwickeln für Nicht-Standard-Targets, wie den Mikrokern Hedron, ist mit ei-
ner geringeren Produktivität verbunden, da typische Toolchains angepasst werden
müssen. Beispielsweise ist die Standardbibliothek auf dem Zielsystem nicht vor-
handen oder es wird eine spezielle Version benötigt. Das Entwickeln für etablierte
Standard-Targets ohne Anpassung einer Toolchain ist hingegen einer großen Zahl
an Entwickler:innen bekannt. Von einem Standard-Target abweichende Toolchains
müssen pro Softwareprojekt angepasst und gepflegt werden. Die Erfahrung zeigt,
dass dieser Prozess viele Ressourcen bindet.

In dieser Arbeit werden Änderungen an Hedron sowie ein zugehöriges Laufzeit-
system vorgestellt. Im Zusammenspiel ermöglichen diese Komponenten die parallele
Ausführung von Hedron-nativen Anwendungen und unmodifizierten Fremdanwen-
dungen am Beispiel von Linux-Programmen. Das ermöglicht, die etablierten Tool-
chains wiederzuverwenden und neue Software für Hedron mit diesen zu entwickeln.
Ferner werden auch Linux-Programme unterstützt, die zusätzlich selbst Hedron-
native Systemaufrufe enthalten (Hybridanwendungen). Daraus resultiert die Mög-
lichkeit, zusätzlich direkt mit Schnittstellen der Laufzeitumgebung zu kommunizie-
ren.

Fremdanwendungen laufen dabei als First-Class Citizens, also Seite an Seite mit
Hedron-nativen Anwendungen. Das ist im Kontrast zu Lösungen wie L4Linux, die
Binärkompatibilität über einen (para-)virtualisierten Gast ermöglichen. In dieser
Arbeit wird Binärkompatibilität über eine Emulation der Fremdschnittstelle im
User Space erreicht. Dies ermöglicht eine enge, funktionale und performante Inte-
gration in das bestehende Laufzeitsystem, wie den Zugriff auf existierende Datei-
und Speicherverwaltungsdienste.

Ich zeige auf, dass die Lösung eine hohe Produktivität von Entwickler:innen er-
möglicht und die Kosten der Emulationsschicht bei beispielsweise großem Daten-
durchsatz im Dateisystem mit Linux mithalten können.

9

Task

The subject of this work is the design and implementation of a generic mechanism
that allows the execution of hybrid as well as unmodified foreign applications under
the microkernel Hedron, a fork of NOVA. Foreign applications are programs which
were developed against a system-call layer that is incompatible to Hedron’s. Hy-
brid applications are foreign applications that additionally contain Hedron-native
system calls, which differ from the foreign system calls. Unmodified means that
the applications compiled for the foreign system do not need to be modified for
Hedron, thus binary compatibility is provided.

The aim is to investigate to what extent productivity increases in the develop-
ment of new software for Hedron if, for example, the existing toolchains for Linux
can be used. This should be compared to the additional effort caused by a cus-
tomized toolchain that is required for a non-standard target, such as Hedron. The
general functionality of the system should be demonstrated with the successful
execution of simple Linux programs running under Hedron, such as a file-system
microbenchmark. The impact on the performance of foreign system calls needs
to be investigated. In keeping with the microkernel philosophy, the solution must
not implement any policy in the kernel. Only the minimum necessary mechanism
is implemented in the kernel, everything else is the responsibility of the runtime
environment in user space.

11

Abstract

Developing for non-standard targets, such as the Hedron microkernel, is associated
with lower productivity, since typical toolchains have to be adapted. For example,
the standard library is not available on the target system or a special version is
required. Developing for established standard targets without adapting a toolchain,
on the other hand, is known to a large number of developers. Toolchains that
deviate from a standard target must be adapted and maintained for each software
project. Experience shows that this process ties up many resources.

This paper presents modifications to Hedron and an associated runtime system.
Together, these components enable the parallel execution of Hedron-native appli-
cations and unmodified foreign applications using Linux programs as an example.
This allows to reuse the established toolchains and developing new software for
Hedron with them. Furthermore, Linux programs are supported that contain ad-
ditionally Hedron-native system calls (hybrid applications). This makes it possible
to communicate directly with interfaces of Hedron’s runtime environment.

Foreign applications run as first-class citizens, i.e., side-by-side with Hedron-
native applications. This is in contrast to solutions like L4Linux which enable
binary compatibility via a (para-)virtualized guest. In this work, binary compati-
bility is reached via an emulation of the foreign interface in user space. This allows
a tight, functional, and performant integration into the existing runtime system,
such as access to existing file and memory management services.

I show that the solution enables high developer productivity and that the cost
of the emulation layer can keep up with Linux, for example, with large file-system
throughput.

13

Contents

List of Figures 18

List of Tables 19

List of Listings 20

1 Introduction 21
1.1 Motivation . 22
1.2 Goals . 23
1.3 Scope . 24
1.4 Code Examples . 24

2 Technical Background 25
2.1 Operating System and Runtime Environment 25
2.2 Different Kernel Architectures . 25

2.2.1 Monolithic Kernels . 25
2.2.2 Microkernels . 26
2.2.3 Comparison of Microkernels and Monolithic Kernels 26

2.3 Hedron Microhypervisor . 28
2.3.1 Capabilities . 28
2.3.2 Functionality Inside Kernel Space 28
2.3.3 Kernel Objects . 29
2.3.4 IPC and the UTCB . 31

2.4 Roottask and Runtime Environment 32
2.5 Application Binary Interface (ABI) 32
2.6 System Call ABI . 33
2.7 How Linux Runs Binaries . 34

2.7.1 Initial Linux Stack Layout 34
2.7.2 Signals in Linux . 36

2.8 Static and Dynamic Binaries . 36
2.9 The Rust Programming Language 37
2.10 Summary . 38

3 Design 39
3.1 Enabling Foreign Applications . 39

3.1.1 Reach Binary Compatibility 40

15

16 / 110 Contents

3.1.2 Modifications to the PD-Object in Hedron 45
3.1.3 Handling Foreign System Calls in User Space 45
3.1.4 Need for Mediators . 46
3.1.5 Implications and Limitations for Foreign Applications 49

3.2 Enabling Hybrid Applications . 49
3.2.1 Identify Hedron System Calls from Foreign Applications . . 50
3.2.2 Implications and Limitations for Hybrid Applications 52

3.3 Emulating a Relevant Portion of Linux 52
3.3.1 Important System Calls . 52
3.3.2 Constructing the Initial Linux Stack Layout 54
3.3.3 Sending Signals . 54

3.4 Summary . 56

4 Implementation 57
4.1 Changes To Hedron . 57
4.2 Runtime System . 58

4.2.1 Well-Known Runtime Services 59
4.2.2 In-Memory File-System Service 59
4.2.3 Process Management . 59
4.2.4 Identifying the Origin of Portal Calls 60

4.3 Handle Foreign System Calls . 61
4.4 Hybrid Parts in Foreign Application 62
4.5 Communication Path: Native vs Foreign 62
4.6 Implementation Challenges . 64
4.7 Breaking Changes to Hedron API 66
4.8 Summary . 66

5 Evaluation 67
5.1 Functionality and Reliability . 67
5.2 Developer Productivity . 68

5.2.1 Scope . 68
5.2.2 Approach A: Providing a POSIX Compatibility Layer 69
5.2.3 Approach B: Developing “Non-Standard” Software 71
5.2.4 Comparison to My Presented Work 74

5.3 Performance . 75
5.3.1 Pure System-Call Performance 76
5.3.2 PD-internal and Cross-PD IPC Performance 76
5.3.3 Foreign System-Call Performance 78
5.3.4 File-System Microbenchmark 79

5.4 Summary . 82

6 Related Work 83
6.1 VM-based Software Reuse . 83

6.1.1 Reuse Original Operating System 83

Contents 17 / 110

6.1.2 Provide Forward Kernel . 84
6.2 System-Call Interception/Emulation 85
6.3 Visual Comparison . 87

7 Future Work 89

8 Summary and Conclusion 91

9 Appendix 93
9.1 Source Code of Main Contributions 93
9.2 Code Examples . 93
9.3 Additional Implementation Details 97
9.4 Supported Linux System Calls . 99
9.5 Side Contributions . 100

Glossary 101
Hedron-specific Terms . 101
Other Terms . 102

Acronyms 105

Bibliography 107

List of Figures

2.1 Comparison of a request to system services (such as memory) on a
microkernel-based system vs. a system with a monolithic kernel. . 27

2.2 Typical relation between a Protection Domain, global Execution
Contexts, and local Execution Contexts to run programs. 30

2.3 Overview of the role of the UTCB in IPC. 31
2.4 Example of the initial Linux stack layout for a Linux application. . 35
2.5 Overview of the chances an exchangable standard library offers. . . 37

3.1 Overview of a foreign application performing a Linux write syscall. 44
3.2 Optimized version of the architecture shown in Figure 3.1. 48
3.3 Flow chart of modified system-call handling inside Hedron applica-

tions. 50

4.1 Process modeling inside the Rust runtime environment. 60
4.2 A native application that interacts with the file-system service. . . 63
4.3 A foreign application communicating with the file-system service. . 63

5.1 Screenshot of the output of a Linux application under Hedron. . . 68
5.2 Overview of native system-call costs under Hedron. 76
5.3 Overview of IPC costs. 77
5.4 Overview of foreign system-call costs from a Linux application. . . 78
5.5 File-system microbenchmark with a file size of 64 KiB. 80
5.6 File-system microbenchmark with a file size of 1 MiB. 81

9.1 Bootstrapping flow from the firmware to the running user apps. . . 98

18

List of Tables

2.1 Overview of Hedron’s kernel objects. 29
2.2 Overview of common system-call ABIs on x86_64. 33

3.1 Overview of required system calls from several static “Hello World”-
binaries on Linux. 53

6.1 Comparison between existing solutions regarding the level of inte-
gration into the main runtime system. 87

19

List of Listings

4.1 Snippet from Hedron’s system call handler with my modifications. 58
4.2 Portal context enum attached to each PtObject. 61
4.3 Code snippet that shows how to enable and disable the NSCT. . . 65

9.1 Linux application that calculate certain metrics of a circle. 94
9.2 Matrix multiplication in C. 95
9.3 Linux application that performs some basic file-system operations. 96
9.4 Hybrid Linux application written in Rust. 97

20

Introduction 1
The availability of software is a key factor for the success of an Operating System
(OS). When a new kernel with a new runtime system is created, it is usually dif-
ficult to find developers for it, because the majority is always going to use what
they are familiar with. Writing software is not just about writing code but about
having a good mental model regarding the system, a situational awareness what
tooling is applicable, and an understanding about how problems can be debugged.
Undeniably, Windows and UNIX -like OSs (Android, macOS , Ubuntu, . . .) are
what the majority is used to and the target platforms for all known and convenient
tooling. This tooling includes Integrated Development Environments (IDEs), com-
pilers, build systems, and debuggers. For example, IDEs offer auto-completion for
functions from the standard library and quick navigation to library functions. This
convenience usually goes at least partially away with a custom build setup for a
non-standard runtime environment. Newer languages, such as Rust with its ecosys-
tem, make it easier to build for non-standard targets. Especially the configuration
and set-up process of the build system is simplified. Still, the convenience is worse
than when developing for standard targets. Furthermore, the amount of usable
libraries (without further modification) is limited for non-standard targets. This
thesis focuses on improving the developer experience for application programming
for Hedron by giving developers the ability to use convenient Linux tooling paired
with Hedron-specific functionality. Furthermore, it will lower the learning curve for
new developers in their on-boarding process.

In this thesis, I introduce changes to Hedron and a corresponding new run-
time environment for it. Both in combination allow the execution of applications
compiled for other operating systems. As a proof of concept, I implemented the
necessary functionality in user space for a correct execution of simple Linux pro-
grams. Although not implemented, the mechanisms described in this thesis will
work for Microsoft Windows and macOS programs as well because it makes no
specific assumptions.

In this chapter, I introduce the reader to goals and non-goals of this thesis. In
Chapter 2 on page 25, I discuss relevant technical background knowledge. Chapter 3
on page 39 presents my design for a policy-free system-call layer for Hedron. In
Chapter 4 on page 57, I focus on concrete implementation decisions. The evaluation
in Chapter 5 on page 67 discusses the benefits, limitations, and possible performance
impacts of my work. In Chapter 6 on page 83, I discuss related work and how
certain solutions compare to my work. Chapter 7 on page 89 sketches possible

21

22 / 110 CHAPTER 1. INTRODUCTION

future improvements, and Chapter 8 on page 91 finally summarizes all findings.
The appendix in Chapter 9 on page 93 shows further information, such as additional
interesting implementation challenges.

Since Hedron uses abstractions that differ from typical UNIX abstractions, I
especially recommend checking the corresponding Section 2.3.3 on page 29 in the
background chapter, where all important Hedron abstractions and kernel objects
are explained in more detail. In addition, it may be helpful to look at the glossary
on Page 101 for a brief overview of important terms.

My work uses the term foreign application to describe applications that were
developed for another OS, i.e., with a non-Hedron system-call Application Pro-
gramming Interface (API), such as Linux. A “Hello World”-program compiled for
Linux is an example of a foreign application. The term hybrid application will be
used to refer to foreign applications that contain Hedron-native and foreign system
calls side-by-side inside the same binary. When I talk about an application that
is executing under Hedron, I mean the application executes under Hedron and the
runtime system presented in this thesis.

All technical discussions and measurements of this work focus on the x86_64-
architecture since Hedron is only used on that platform. The source code of my
contributions can be found in the appendix in Section 9.1 on page 93.

1.1 Motivation
For a custom and not widely known OS, new developers need to learn about the
kernel and its API first before starting to write software for it. Taking Linux
as example, developers are familiar with the libc standard library. Thus, it is
convenient if developers can reuse this interface to develop software for Hedron.

Cyberus Technology1 has identified a need for a pragmatic solution to execute
Linux applications under Hedron. The focus is not necessarily on making existing
software usable, but primarily on writing new software with the same experience as
developing for Linux. Specifically, established and well-known toolchains become
feasible to be used for new Hedron applications. The result is a great developer
experience with rapid progress and high productivity. Hybrid applications are a
way to achieve this because typical workloads can be handled with known calls to
libc whereas special functionality of Hedron or the runtime system can be triggered
with an additional library.

1https://www.cyberus-technology.de

https://www.cyberus-technology.de

1.2. GOALS 23 / 110

1.2 Goals
For this work I have set the following important objectives.

1. A generic mechanism is required to execute unmodified binaries for another
OS under Hedron that allows a binary compatibility. Unmodified means that
the executable files are supported in the state as they are produced by their
default toolchain. These applications may be hybrid, i.e., Linux applications
with some Hedron-native system calls side by side to regular ones. This
combines the convenient and well-known experience of developing for existing
software ecosystems with the easy integration of Hedron-related functionality
into newly written programs.

2. The mechanism must enable tight integration of foreign programs into the
existing runtime environment. For example, if a foreign application wants to
open a file with the UNIX system call open(), this action should be handled
by the normal file-system functionality of the runtime system.

3. The amount of new code in user space to emulate a relevant portion of foreign
system calls should be within reasonable limits. If it requires millions of lines
of code, hence a nearly full reimplementation, solutions such as L4Linux are
a better option [18].

4. The changes to Hedron should be minimal and not introduce policies inside
the kernel. It should be permitted to have competing implementations in
user space. The microkernel should still be a microkernel afterwards.

5. Developer productivity and developer experience for a new (hybrid) Hedron
application must be similar to developing a new program for example for
Linux. Typical IDEs and debugging tools must be applicable.

To validate the successful execution of simple foreign applications, static Linux
executables produced from programs written in C , Rust, and Zig will be tested. All
further functionality, i.e., supporting more system calls for complex programs, is a
matter of diligence, whereas the necessary basic mechanism around for the system-
call intercepting and handling stays the same. To verify the functionality of the
hybrid part, the “Hello World”-program written in Rust will be slightly modified
to include Hedron-native system calls in addition.

With the solution I present in this paper, which meets the goals I set, developers
will be able to write a new Hedron program using existing Linux tooling. This
means, typical setups and toolchains to build applications are applicable, valgrind
can be used to find memory leaks, and typical unit testing frameworks will integrate
easily. Additionally, the program may contain code to act as a Virtual Machine
(VM) under Hedron when it has full access to all Hedron-native system calls. There
is no need to set up and support custom toolchains. Note that unit testing and
memory checkers, such as valgrind, can only cover non-Hedron functionality. The
test might needs to mock Hedron-calls when tests are executed under pure Linux.

24 / 110 CHAPTER 1. INTRODUCTION

1.3 Scope of This Thesis
It is not a goal that foreign applications will see their typical, complete runtime
environment including specific services of the given foreign OS. Hence, taking
Linux as example, a foreign Linux application will not see interfaces to runtime
(sub-)systems, such as ALSA, X11 , or Wayland. It is also not a goal to enable
desktop environments with a rich Graphical User Interface (GUI).

Cyberus Technology’s usage of Hedron was never meant for rich, multimedia
applications and also will not cover this domain in the near future with its corre-
sponding runtime environment. Thus, with the implementation in Chapter 4 on
page 57, foreign applications will not be able to draw to the screen or playback au-
dio data. Although, the generic mechanism proposed by my work is not in contrast
to such functionality and is a step forward to achieve that.

To implement an emulation layer for foreign system calls in user space, I need a
basic runtime system that provides basic functionalities such as memory allocations,
logging facilities, and basic process management. These topics are well understood
and already established in research and products [11, 19]. Hence, the discussion in
this work will only focus on the relevant parts of the runtime system that enable the
major contributions of my work. It is out of scope to discuss how a runtime system
should be designed for Hedron or how maximum performance can be reached.

Finally, this work proves the functionality of the mechanism by successfully ex-
ecuting static Linux applications. Although it is technically possible to run static
and dynamic applications with my proposed mechanism, supporting dynamic ap-
plications is out of scope.

1.4 Code Examples
Section 9.2 on page 93 shows multiple code examples that give the reader an idea
about what kind of foreign and hybrid applications can be executed with the in-
troduced foreign system-call mechanism for Hedron in Chapter 3 on page 39 and
the corresponding policies implemented in user space described in Chapter 4 on
page 57. As my current implementation only supports static Linux binaries, the
code examples must be linked statically (for example against the musl library).
However, this is a limitation of my runtime environment and not a limitation of
the proposed policy-free system-call layer.

Technical Background 2
This section provides an overview of all relevant topics and areas covered in this
thesis. The thesis assumes that the reader is familiar with the fundamentals of
programming and basic OS concepts [38, 25]. Nevertheless, it gives a short intro-
duction to a few generally known terms to recapitulate important facts briefly. For
a quick overview of relevant terms, please also refer to the glossary on Page 101.

2.1 Operating System and Runtime Environment
An OS consists of the kernel and necessary runtime services running in user space.
The kernel forms the runtime environment together with all relevant user-space
components that provide the expected functionality of the system. There is no
clear definition for relevant user-space components as they depend on the system,
or more precisely, on the use case. A typical Microsoft Windows user for example
sees the complete desktop environment with all pre-installed system applications
as OS whereas a shell-only user of a headless Linux distribution needs much less
functionality and still considers the system as a full OS. One way to classify OSs
from a technical perspective is to look how they distribute responsibility between
kernel space and user space.

2.2 Different Kernel Architectures
In the real world multiple designs for kernels architectures exist. Some OSs include
drivers primarily inside the kernel whereas others include drivers primarily in user
space. There are also mixed versions. Each has advantages and disadvantages that
are discussed in the following.

2.2.1 Monolithic Kernels
Linux-based distributions and Microsoft Windows are among the most used OSs
in the world, and both combined have a total dominance in consumer- and server-
markets [40]. Although various systems share a monolithic design, there are differ-
ences at multiple levels, for example, in the handling of files and devices.

These systems are popular because the majority of software exists for them. Users
tend to continue using systems they understand instead of switching to new ones,

25

26 / 110 CHAPTER 2. TECHNICAL BACKGROUND

although they may have better safety and security guarantees. Because of that fact,
new software is developed for the established monolithic systems. It becomes hard
to break out of the loop to establish new system architectures that are interesting
to a significant amount of users.

Both kernels, Linux and Windows NT , grew over the last decades. Although
code bases are improved over time, bugs might exist for over 15 years [15]. This
applies for all software and not only monolithic kernels but the attack surface of
each (silent1) bug is significantly more dangerous in kernel space. Although many
monolithic kernels have support for user-space drivers, the default is still to add
new and large drivers into the kernel code bases [41, 1]. Hence, these kernels still
suffer from several security and safety issues caused by their monolithic design.

2.2.2 Microkernels
A microkernel follows the concept that as little code as possible runs in kernel space
with a few reasonable exceptions.

“A concept is tolerated inside the microkernel only if moving it out-
side the kernel, i.e., permitting competing implementations, would
prevent the implementation of the system’s required functionality.”
– Jochen Liedtke [23]

Jochen Liedtke said a microkernel provides only mechanisms but no policies.
However, many existing microkernels differ in functionality they provide inside
kernel space. For example, scheduling is still part of most L4 microkernels because
no efficient user-space solution exists for that [8]. Thus, Liedtke’s famous quote is
a strong hint but no absolute rule. Different implementations take different design
decisions.

For L4 microkernels, the following applies: The code of the kernel is only related
to bootstrapping the system, managing memory and address spaces, providing an
Inter-process Communication (IPC) mechanism, and a small set of drivers [23]. All
other functionality runs in user space.

The small amount of code in kernel space reduces a possible attack surface sig-
nificantly.

2.2.3 Comparison of Microkernels and Monolithic Kernels
In Figure 2.1 on the facing page, we can see a comparison of how an application
requests system resources, such as memory, under different operating system ar-
chitectures. On the left a monolithic system is shown. The application performs a
system call and receives the result from that. This process is quick as the memory
subsystem lives inside the kernel. Jumping into the kernel only require a lightweight
context switch, i.e., no full address-space switch. The kernel usually lives in the

1A bug that can live in the code base for years without being discovered.

2.2. DIFFERENT KERNEL ARCHITECTURES 27 / 110

same address space as a user application, which makes the context switch to the
kernel faster. This is only partially true if several mitigation techniques for vul-
nerabilities such as Meltdown are active. For example, techniques such as kernel
page table isolation will add further latency but new smart mitigation strategies
can keep the overhead of mitigations small [9].

On the right side of the figure an application that requests a system resource
under a microkernel-based system is shown. All important subsystems, such as
memory management, run in user space. The microkernel does not answer a re-
quest for a system resource directly but only offers a IPC mechanisms to a corre-
sponding user-space destination. Hence, the costs of requesting system resources
are usually higher compared to monolithic designs. To request a system resource, it
does not only take a context switch into the kernel, but it takes two expensive con-
text switches between processes. They are expensive because the context switches
include an address-space switch.

The upper half of the figure (red) displays the kernel space, i.e., code running in
privileged mode. The lower half (green) shows the user space. We can see that the
amount of code running in privileged mode (kernel space) on a microkernel-based
system is significantly smaller compared to a monolithic system.

In both cases, the requests must pass through the kernel as it is mandatory that
the kernel checks for the correct permissions. Permissions can be modeled through
capabilities, as explained in Section 2.3.1 on the next page.

Figure 2.1: Comparison of a request to system services (such as memory) on a
microkernel-based system (on the right) vs. a system with a monolithic
kernel (on the left). On the left, the memory management system is
in kernel space. An application can communicate with it via a single
system call. On the right, an application needs to perform an IPC
request guarded by the kernel to another user-space component, which
implements the requested functionality.

28 / 110 CHAPTER 2. TECHNICAL BACKGROUND

2.3 Hedron Microhypervisor
The Hedron microhypervisor is a fork of NOVA maintained by Cyberus Technology.
NOVA was publicly introduced in 2010 [36] and integrates itself into the long history
of L4 microkernels [36, 8]. The last shared commit of Hedron with NOVA dates
back to 2015 [12]. Both projects share the same basic principles and large parts of
the code base. The NOVA paper uses the terms microhypervisor and hypercall [36].
For consistency, I use the terms microkernel for microhypervisor and system call
for hypercall.

2.3.1 Capabilities
Hedron uses capabilities to enforce security, manage system resources, and enable
the principle of the least privilege. A capability is the right to use, alter, obtain
access, or revoke access a certain system resource [32, 20].

Capability selectors are used to refer to capabilities from user space. They are
an integer and similar to file descriptors in UNIX. Therefore, the application must
keep knowledge about what capability selector belongs to which kernel object. This
is similar to the following C example targeting an UNIX interface:

// FD is similar to a capability selector: keep track of it
int config_file_fd = open("/foo/bar.txt", O_RDONLY)

2.3.2 Functionality Inside Kernel Space
As mentioned in Section 2.2.2 on page 26, microkernels aim for as little code in
privileged mode as possible. For example, NOVA had only 9,000 Source Lines of
Code (SLOC) when it was released [36].

However, the L4 history proved that a certain amount of functionality must be in
the kernel for sensible functionality and performance. Inside kernel space, Hedron
provides IPC primitives, address spaces, hardware-assisted virtualization, resource
management via capabilities, delivery of interrupts, scheduling, and timers. Fur-
thermore, Hedron is capable of bootstrapping the relevant parts of the underlying
hardware, such as initializing and starting all CPUs to take full benefit of all cores
from a multicore processor. It understands the page table mechanism as well as
the Local Advanced Programmable Interrupt Controller (LAPIC) of each core. In
short, it initializes the x86_64 platform. There is also a small portion of code
to initially extract and dispatch the roottask (an Executable and Linking Format
(ELF)-file), which Hedron expects as a GRUB boot module during boot. The role
of the roottask is explained in Section 2.4 on page 32.

2.3. HEDRON MICROHYPERVISOR 29 / 110

2.3.3 Kernel Objects
A kernel object is a data structure, usually with a mutable state, that the kernel
manages to fulfill the promised functionality. It is the base for certain program-
ming primitives of the system. Hedron knows five distinct kernel objects that are
explained in Table 2.1. They correspond to the kernel objects of NOVA [36]. A
Protection Domain (PD) in combination with Execution Contexts (ECs) is similar
to what we know as process in UNIX. As it can have multiple ECs, a PD with
multiple ECs can be understood as a process with multiple threads. The PD is a
resource container for other kernel objects and memory capabilities. It holds the
address space of a process.

ECs split into the two types: local ECs and global ECs. While global ECs execute
in their own time slice provided by their dedicated Scheduling Context (SC), local
ECs wait for a request until they execute and use the time slice of the caller.

One typical scenario for the usage of kernel objects is the following: If a PD
wants to export functionality, like an interface to allocate memory, it can create a
Portal (PT) that is bound to one of its local EC. The capability to that PT then
needs to be delegated to the target PD that wants to access this service. When
a PT (or another object) is granted to a PD, code running in that PD can access
it through the corresponding capability selector. Through a call system call, the
delegated PT can be reached. Hedron ensures that a caller has a capability to the
specified PT to perform IPC.

Kernel Object Description
Protection Domain (PD) A resource container that holds an address space and

capabilities to other kernel objects.
Execution Context (EC) Bundles the execution state, such as instruction

pointer and stack pointer, and belongs to a PD. There
are local ECs and global ECs.

Scheduling Context (SC) Gives a global EC a time slice.
Semaphore (SM) Object used for synchronization of producer-

consumer scenarios, such as interrupts.
Portal (PT) An IPC endpoint bound to a local EC.

Table 2.1: Overview of Hedron’s kernel objects.

30 / 110 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.2: Typical relation between a Protection Domain, global Execution Con-
texts, and local Execution Contexts to run programs. The left side
shows that a PD can have one or multiple global ECs. Each global EC
needs one SC to receive a time slice. The left side shows what is similar
to a process in UNIX with multiple threads. The right side shows the
role of PTs. Each PT belongs to one local EC in which it executes. The
figure only shows a subset of potential relations.

Figure 2.2 shows a subset of possible relations between those kernel objects. It
shows the typical relation to enable a multithreaded program that also exports
functionality via PTs. It shows how global and local ECs are used and that they
all run inside the address space of their corresponding PD. The figure omits that a
PD can have capabilities to other kernel objects.

All ECs live and execute inside the address space of the owning PD. A global EC
needs a SC to run. A local EC can only run if a PT that is bound to it is called. As
local ECs uses the time slice from the caller, only global ECs can initiate an IPC
call to PTs. Nevertheless, local ECs can trigger further IPC calls, as long as the
time slice of a caller is available. This donation of time slices also prevents priority
inversion scheduling problems [36, 31].

Semaphores (SMs) are used for synchronization of producer-consumer scenarios,
such as interrupts. A PD may use an arbitrary number of SM objects. The vCPU
is a special form of an EC used to run operating systems in virtualized contexts.
It offers software an interface to run under Hedron from a virtualized context with
the downside of much higher costs when it communicates to Hedron (VM exits).
The vCPU is not relevant for this work and is not discussed further. Details about
it can be found in the original NOVA paper [36].

2.3. HEDRON MICROHYPERVISOR 31 / 110

2.3.4 IPC and the UTCB
Under Hedron, processes (or to be specific: ECs) communicate via memory pages.
For IPC, each EC has its own memory page called the User Thread Control Block
(UTCB). All UTCBs are always mapped in Hedron. During IPC, Hedron copies
data from the UTCB of the caller to the UTCB to the callee. Thus, Hedron uses
kernel memory2 IPC instead of register based IPC as other L4 microkernels [8].

Figure 2.3: The global EC A1 of PD A shown on the bottom left wants to commu-
nicate with a service provided by PD B. It copies relevant payload into
its UTCB and performs a call system call to the target PT [STEP 1].
Hedron copies all payload from the UTCB of the caller to the UTCB
of the callee [STEP 2]. Afterwards, control flow continues on the right
side in PD B [STEP 3]. When the handler is done, it performs a reply
system call [STEP 4]. Any result stored in the UTCB of local EC B2
is transferred back to the UTCB of the original caller [STEP 5] and
control flow continues in EC A1 [STEP 6]. The blue parts inside the
figure show all data flow operations whereas the red parts represent
control-flow operations.

Figure 2.3 gives a detailed view of the role of the UTCB in IPC under Hedron. It
shows how a caller on the left calls a service on the right and how control flow and
data flow work. Additionally, the right side shows the global EC B1 to demonstrate
that each EC has its own UTCB. Thus, there is no shared UTCB between two ECs.

Exception IPC

Hedron delivers exceptions, such as invalid opcode (0x6) or page fault (0xe), by
using the existing PT-based IPC mechanism. It uses a well-defined layout (“UTCB
exception layout”) to store the failed EC’s CPU state, such as general purpose

2The message buffer is always mapped in the kernel and the kernel transfers data from buffer A
to buffer B during IPC.

32 / 110 CHAPTER 2. TECHNICAL BACKGROUND

registers, into the UTCB of the corresponding exception PT. If the user-space
handler receives an exception, the handler finds the original CPU state of the caller
in its UTCB and start handling the exception. The Message Transfer Descriptor
(MTD), which is assigned to each PT, specifies what information Hedron should
store inside the UTCB exception layout. The MTD is a bitfield that tells whether
general purpose registers, the instruction pointer, and other information about the
CPU state should be taken into account in that process. When the exception IPC
is replied, the (maybe from the userland altered) MTD inside the UTCB defines
what fields from the UTCB should be put into the CPU state of the caller that
originally triggered the exception. For example, this way the stack pointer can be
altered.

2.4 Roottask and Runtime Environment
A roottask is the initial software component in a microkernel-based system that
runs in user space. It can also be called the init process. The difference to the
init process on monolithic systems, such as systemd3, is that the roottask also
decides how all drivers are bootstrapped and how they are exposed to the runtime
environment.

The microkernel hands over control to it when the mandatory setup of the kernel
successfully finishes. The roottask is bound by the kernel’s limits and API, but
apart from that it can create and enforce various policies and conventions for the
runtime system. A runtime system includes all important services and IPC end-
points inside the roottask and other processes. Examples are a central logging gate
(stdout), an allocator service, or a file-system service.

2.5 Application Binary Interface (ABI)
An Application Binary Interface (ABI) is a special form of an API that is relevant in
low level system programming contexts. The following quote gives a good definition:

“Whereas an API defines a source interface, an ABI defines the low-
level binary interface between two or more pieces of software on a
particular architecture. It defines how an application interacts with
itself, how an application interacts with the kernel, and how an ap-
plication interacts with libraries. An ABI ensures binary compati-
bility, guaranteeing that a piece of object code will function on any
system with the same ABI, without requiring recompilation.” –
From the book: Linux System Programming [24]

3https://www.freedesktop.org/wiki/Software/systemd/

https://www.freedesktop.org/wiki/Software/systemd/

2.6. SYSTEM CALL ABI 33 / 110

There exist a variety of ABIs in the world of software, such as the
System V ABI [37]. It specifies how parameters are passed to functions on several
platforms. As example, on x86_64 the first function argument usually is passed
through register rdi.

2.6 System Call ABI

The system-call ABI describes the way values are passed to the kernel from user
space. On x86_64 system calls are done with the syscall or the sysenter instruc-
tion, which makes a fast transition to Ring 0, hence to kernel space. Due to legacy
reasons, x86_64 also supports system calls via an int 0x80-interrupt. This is not
covered in this thesis.

General purpose registers, such as rax, rdi, and rsi, retain their state during
a system call, although there are some hardware limitations. For example, the
syscall instruction saves rip + 2 in rcx, i.e., the return address when the system
call finishes, and RFLAGS in r11.

It is an implementation detail of the OS to create a calling convention that
specifies what value is expected in what register. Hence, each kernel has its own
specific ABI. Table 2.2 shows the system-call ABIs of a small selection of well-known
kernels.

ABI Syscall Num Arg 0 Arg 1 Arg 2 Arg 3 Arg 4 Arg 5
Linux rax rdi rsi rdx r10 r8 r9
Hedron rdi[8..0] rdi[63..9] rsi rdx rax r8 -
Xen rax rdi rsi rdx r10 r8 r9
XNU rax rdi rsi rdx rcx r8 r9

Table 2.2: Overview of common system-call ABIs on x86_64. There are similarities
between all listed systems. Except for Hedron (and NOVA), all use rax
for the system call number. Furthermore, Hedron has one less parameter,
than the others.

A kernel can use any general purpose register to report success or output pa-
rameters, as long as the register is not modified by the hardware on the transition
back to user space. UNIX-like systems usually return the system call result in rax.
NOVA and Hedron use rdi to store the main result and for some system calls rsi
to store a second output value.

34 / 110 CHAPTER 2. TECHNICAL BACKGROUND

2.7 How Linux Runs Binaries
This section gives a short overview of relevant aspects about how Linux runs ap-
plications. This covers topics such as relevant initial data passed to applications
through the stack and how signals are delivered.

When Linux starts an application, it parses the ELF-file and loads all
LOAD-segments into memory with the proper page-table rights. It needs to set
up the stack and to set the instruction pointer to the entry address specified in the
ELF-file.

If the application starts running, several actions happen before the main-symbol
is called. The entry point of the application does not point to main(), but to the
_start symbol. This code is provided by the libc and performs initialization steps
before it eventually calls main. The initialization steps rely on a specific initial
stack layout from Linux that needs to be provided.

2.7.1 Initial Linux Stack Layout
When the CPU starts executing a freshly started Linux-application, the stack reg-
ister rsp points to the bottom address of a data structure called the initial Linux
stack layout. The layout is a few hundred to a few thousand bytes long and contains
the argument vector (argv), the environment variables (envp), and the Auxiliary
Vector (AuxV). The libc will fetch the pointers to argv and envp from the data
structure and pass the information as arguments to main() eventually.

argc, argv, and envp

argv and envp are null-terminated arrays of pointers to C-strings. Additionally,
the C-standard requires passing argc as first argument to main. This information
is also in the initial stack layout as dedicated entry. The pointers in the arrays argv
and envp point into higher addresses of the same initial stack layout, as Figure 2.4
on the facing page shows.

Auxiliary Vector

The AuxV is a data structure inside the initial stack layout that holds information
about the ELF-file and about the environment, such as the platform and hardware
capabilities. Implementations of libc may use information provided by the vector
for dynamic linking or to retrieve information about the platform on which it is
running.

2.7. HOW LINUX RUNS BINARIES 35 / 110

Figure 2.4: Example of the initial Linux stack layout for a Linux application. At
the beginning of the execution of a just started program, the stack
pointer points to the bottom of the structure. The code behind the
_start symbol from libc needs to parse the structure to find the relevant
information it needs to provide for main(), namely argc, argv, envp,
and the Auxiliary Vector (AuxV) (Section 2.7.1 on the preceding page).
The figure shows a screenshot taken from lwn.net [7].

https://lwn.net/Articles/631631/

36 / 110 CHAPTER 2. TECHNICAL BACKGROUND

2.7.2 Signals in Linux

A signal in UNIX-like systems, such as Linux, is a message that notifies the receiving
process about an event. When a process switches from kernel- to user mode, Linux
checks if there are pending events that should be signaled. If so, and a signal
callback handler (a sigaction) is specified, control flow is handed over to the callback.
For this, Linux prepares a special stack frame that contains contextual information
about the signal. There are only a few exceptions that will never be delivered to
user space, such as SIGTERM [34].

2.8 Static and Dynamic Binaries

Applications under Linux but also many other OSs, know a concept of being dy-
namic or static. This concept is also called dynamically or statically linkage. The
executable file format may instruct the program loader to load additional libraries
and link them into memory in order for the binary to fulfil its function. Such pro-
grams are dynamically linked. Static binaries, on the other hand, contain all code
inside the file, which needs fewer steps to load a program into memory and execute
it eventually.

Large and common libraries, such as a system’s standard library (e.g., libc), large
graphic libraries (e.g., GTK 4 or DirectX 5), are usually dynamically linked against
applications. This enables to bring bug fixes to software that is already in the field
and saves space on disk. On the other hand it requires more functionality of the
runtime system, such as a file system where dynamic libraries are located.

Linking against a well-defined interface, such as libc, also enables a basic porting
mechanism. To name an example: Many simple applications written for Linux that
use basic UNIX functions can compile and run on macOS without modifications to
the source code and vice-versa. Figure 2.5 on the next page shows that. A applica-
tion that expects a well-defined standard interface can work on multiple platforms,
if a matching implementation for that interface is available. Static binaries need
a recompilation to work on other systems. Dynamic binaries can work without
recompilation as long as the program loader supports the executable file format
and has a matching library.

4https://www.gtk.org/
5https://docs.microsoft.com/en-us/windows/uwp/gaming/directx-programming

https://www.gtk.org/
https://docs.microsoft.com/en-us/windows/uwp/gaming/directx-programming

2.9. THE RUST PROGRAMMING LANGUAGE 37 / 110

Figure 2.5: The figure shows an application that uses a standard library interface
that abstracts all system calls. In the shown case, the application is pro-
grammed against the libc standard library. This enables to easily port
the binary to other systems by recompiling it and linking the correct libc
against it when the program is loaded. The hedronlibc does not exist
and is also not presented in this work. It is only given as example here.
This benefit exists for static and dynamic binaries, but static binaries
need a recompilation to contain the correct libc implementation.

2.9 The Rust Programming Language
Rust is a system programming language but Rust is not limited to low-level sys-
tems programming. It is expressive and ergonomic enough to make CLI apps, web
servers, and many other kinds of code quite pleasant to write. This section gives a
brief introduction about some basic Rust abstractions used in several code examples
of this thesis. Rc<T> is a reference counted wrapper around a generic type T. It is
similar to a shared pointer in C++. A Weak<T> can be constructed from a Rc<T>:
it is a non-owning reference. A Rc<T> can be used if a parent object references (and
owns) a child, whereas a child should reference its parent only with a Weak<T>.

Result<S, E> is a generic enum with the variants Ok(S) and Err(E). Enums in
Rust work like a typed union in C. Functions may return the Result<S, E> type
if they are usually expected to succeed.

If the method .unwrap() is called on a result that holds Err(E) instead of Ok(S),
the Rust program panics. Panicking is a mechanism used for non-recoverable errors
in Rust. It helps to prevent undefined behaviour by terminating the program in
those cases. Rust programs can be configured to perform a certain action during a
panic. They can either loop forever or write to stdout and perform a system call
to terminate the program. The latter is the default option of the Rust standard
library.

38 / 110 CHAPTER 2. TECHNICAL BACKGROUND

2.10 Summary
In this chapter, I introduced important concepts of the Hedron microhypervisor,
such as its kernel objects (Protection Domain (PD), Portal (PT), Semaphore (SM),
Execution Context (EC), Scheduling Context (SC)) and the UTCB. Furthermore,
I described the Linux system call ABI and what parts are especially important in
an emulation layer.

Design 3
This chapter presents multiple design approaches to enable foreign applications
under Hedron, i.e., how to reach binary compatibility with a policy-free system-call
layer (Section 3.1). After discussing the advantages and disadvantages of those
designs, I explain why I chose a particular design. Next, the chapter discusses
and compares design approaches to enable hybrid applications under Hedron while
taking constraints of the chosen design from Section 3.1 into account (Section 3.2
on page 49). Finally, the chapter discusses the design to emulate a relevant portion
of Linux under Hedron that is influenced by the chosen approach to reach binary
compatibility (Section 3.3 on page 52).

While the design presented in this chapter is intended to be generic, the im-
plementation and the evaluation focuses on Linux as an example. Linux can be
used interchangeably with other operating system’s kernels, as long as I discuss
the policy-free system call layer in Section 3.1 and not the emulation of Linux
functionality in user space in Section 3.3.

The design exploration space spans over two major domains. First, a mechanism
to enable foreign system calls under Hedron and thus allow competing implemen-
tations in user space, and second, enabling Hedron-native system calls from foreign
applications, i.e., enabling hybrid applications. To the best of my knowledge, sup-
port for hybrid applications is unique in the context of microkernels.

3.1 Enabling Foreign Applications
This section focuses on the execution of foreign applications under Hedron without
hindering or breaking existing Hedron-native applications. It examines whether
applications should run in a VM or as a first-class citizen1 and presents the impli-
cations and limitations of those approaches.

Running software with an initially incompatible interface on a host system
is nothing new in computer science and well explored since the occurrences
of VMs [13]. For example, VMs became widely popular with hardware sup-
port on popular architectures to accelerate virtualization in the second half
of the 2000s years [17]. Other approaches such as L4Linux [18] (2001), the
Windows Subsystem for Linux (WSL) [4, 35] (2016), X-Containers [33] (2019), or

1First-class citizens in the context of this work describe applications that run on an equal level
to native applications.

39

40 / 110 CHAPTER 3. DESIGN

the proposed changes to Fuchsia [30] (2021) try to achieve the overall same goal
but all of them focus on fully/pure foreign applications without hybrid parts.

3.1.1 Reach Binary Compatibility
Since I target unmodified foreign applications, I need a design that allows binary
compatibility. Furthermore, the design must enable a functional integration into
existing runtime services. For example, a UNIX open() system call must map to
the interfaces of the runtime system’s file-system service.

The major design question is how to achieve binary compatibility with low main-
tenance costs but also high support of functionality. This can be achieved at mul-
tiple levels, namely by running the foreign applications in a virtualized context or
by executing them as first-class citizens. In the following, I present several design
ideas and discuss them. Afterwards, I show what design I have chosen for this work.

The following list gives a short overview of design ideas to reach binary compat-
ibility. They are discussed in detail on the next pages.

Design Ideas

1. Run foreign applications in a virtualized context (VM):

a) VM with unmodified guest OS

b) Para-virtualized VM with a modified guest OS (e.g. L4Linux [18] or Xen [2])

c) “Lightweight VM” with forward kernel provided by the runtime system
(e.g. ELK Herder [29] or gVisor [16])

2. Run foreign applications as first-class citizens:

a) Extend Hedron’s system-call ABI to reach binary compatibility for the
foreign applications.

b) Provide a POSIX emulation layer through a custom standard library
that maps functions of the standard library to proper runtime function-
ality (e.g., to call system calls).

c) Add a mechanism to Hedron that catches and forwards foreign system
calls to a userland component that implements the policy to correctly
emulate the behaviour of the foreign OS.

Approach 1.a) can be excluded from further discussion because it isolates the
application from the runtime system’s services. Approach 2.a) can also be ignored
because Hedron is a microkernel and should stay one, as defined in the goals of my
thesis in Section 1.2 on page 23. The other approaches are discussed in detail in
the following.

3.1. ENABLING FOREIGN APPLICATIONS 41 / 110

Running Foreign Applications in a Para-virtualized VM

This section corresponds to approach 1.b). Since Hedron is a microhypervisor, it
already brings the necessary functionality for hardware-assisted virtualization on
x86_64. The use of para-virtualized VMs is well suited for isolation between tenants
on a shared system because the virtualized Linux kernel gives tenant applications
binary compatibility while the performance overhead that guest applications face
is kept low. However, the existing and default setups prevent any interaction from
the VM with runtime services of the main system.

To enable interactions with the runtime services one could think of a modified
Linux in a VM running under Hedron that has a para-virtualized interface to the
main runtime environment. This interface acts as a bidirectional communication
channel between the main runtime environment and the para-virtualized Linux.
Commands sent through this channel can instruct Linux for example to start or
stop certain Linux applications or to create memory mappings. Running foreign
applications in a para-virtualized VM requires changes to the guest kernel because
it requires a para-virtualized interface to Hedron. Parts of the logic can be imple-
mented in the guest’s user space that uses this para-virtualized interface.

The advantage of this approach is that foreign applications can use the full fea-
ture set of the guest kernel. But keeping the para-virtualized Linux kernel up to
date requires a significant maintenance effort. OSs are complex software projects
and the maintenance is an individual process per OS. In the worst case, multiple
versions of foreign kernels with multiple corresponding user-space daemons have to
be maintained per supported foreign OS at the same time. This is against the goal
that the mechanism plus corresponding policy implementations should be easily
maintainable.

Since a tightly coupled integration into the services of the main runtime envi-
ronment, such as logging or accessing the file system, is desired, running foreign
applications in a (para-virtualized) VM triggers numerous expensive VM exits fol-
lowed by VM entries. As a lively communication between the Hedron-world and
the VM-world can be expected for hybrid applications, the costs increase compared
to pure VMs-internal processing.

Running Foreign Applications in a Lightweight VM (Forward Kernel)

This section corresponds to approach 1.c) of Section 3.1.1 on the facing page. A
more lightweight but still virtualized approach is a foreign application that runs
with hardware-assisted virtualization features but not on top of the guest OS. In-
stead, the Hedron userland provides a forward kernel for virtualized foreign appli-
cations that forwards system calls to the Hedron userland. This approach is similar
to Compute Node Kernels (CNK) [14].

Using a forward kernel enables the typical isolation guarantees of VMs but does
not offer the binary compatibility enabled by reusing the guest OS. To reach bi-
nary compatibility, Linux system calls can be partially implemented in the forward

42 / 110 CHAPTER 3. DESIGN

kernel, such as in gVisor [16, 42]. However, system calls not handled by the for-
ward kernel must be implemented by the host. Solutions such as ELK Herder [29]
forward all system calls to the main system.

ELK Herder shows a general performance overhead of 2.2% [29]. This overhead
can be measured if the tested workload does not require many system calls. System-
call intensive workloads on gVisor for example come with a 50% overhead in system
call throughput. These costs originate from expensive VM exits and reentries.

The maintenance overhead is reduced compared with approach 1.b) (Sec-
tion 3.1.1 on the previous page) because only the forward kernel and a component
in Hedron’s user space (the OS personality) needs to be maintained. However, this
approach requires regular updates to a dedicated user-space component that im-
plements foreign system calls. Depending on the OS, this may be less complicated,
as maintainers have full control over their build setup and do not have to deal
with foreign code bases. Using a forward kernel is similar to 2.c) (which is dis-
cussed shortly) because binary compatibility is reached via a dedicated user-space
component.

Reaching a functional integration into the existing runtime environment with a
forward kernel is less flexible than with approach 1.b) because in 1.b) one can
provide user-space daemons in the modified guest OS. Such a daemon can use
a para-virtualized gate to the outer world. This does not apply to a virtualized
environment that only consists of the foreign application and the forward kernel.
With a forward kernel, the only possibility to enable a functional integration of the
foreign application into the main runtime system is to map the used system-call
interface onto corresponding functions of the runtime system.

It might be possible to trigger Hedron-native system calls from the foreign ap-
plication so that the forward kernel or the responsible user-space component can
distinguish them from foreign system calls, but for all virtualized approaches, i.e.,
1.b) and 1.c) [this section], the performance penalty of frequent VM exits and en-
tries is undesirable. This is the reason why I did not choose a virtualized approach.
In the following, I discuss approaches that enables foreign applications as first-class
citizens without the overhead of VM exits and entries.

First-Class Citizens With a POSIX Emulation Layer

This section corresponds to approach 2.b) of Section 3.1.1 on page 40. One ap-
proach to enable foreign applications as first-class citizens is to link a matching
standard library like a POSIX emulation layer. Such a layer forwards libc func-
tions to corresponding PTs of the Hedron runtime environment (however, there are
differences between libc implementations and POSIX, but they are irrelevant here).
As explained in Section 2.8 on page 36, an advantage of applications that dynam-
ically or statically link against a standard library (or a well-known interface such
as POSIX) is that they are easily portable. Dynamic applications can be ported
without recompilations in general (depending on the complexity and the executable

3.1. ENABLING FOREIGN APPLICATIONS 43 / 110

file formats the loader supports). In this section, POSIX emulation layer can be
read interchangeable with other well-defined layers, such as win32 .

For Microsoft Windows and UNIX-like systems it is the default to dynamically
link applications. However, replacing the dynamically-linked standard library with
a modified version that maps function calls to the corresponding runtime services
is not sufficient. First, applications can be statically linked, so that the standard
library cannot be replaced (once compiled). Second, applications can always contain
hard-coded system calls, which would also not be covered by a POSIX compatibility
layer. Besides these problems, applications might require different versions of the
standard library, which would all have to be maintained.

One could patch hard-coded system calls inside the binary to point to PTs that
fulfill the promised functionality. This patching can either happen when the pro-
gram is loaded into memory or at install time. A patching mechanism allows the
replacement of existing Linux system calls with function calls that implement the
desired functionality. A similar approach is taken by X-Containers [33]. The in-
frastructure required to patch machine code is tricky and outweighs the costs of the
small modification to Hedron for approach 2.c) that I describe in the upcoming
section.

With this approach, which relies on applications are programmed against well-
known compatiblility layers, maintainers of Hedron and its runtime system have
to maintain a standard library/compatibility layer at possibly different versions,
which is rather complex, if more software is supported.

Providing a POSIX compatibility layer supports dynamic Linux binaries through
the dynamically linked standard library, static binaries by linking them statically
against a copy of the library, and all hard-coded system calls outside the standard
library can be patched as described above. Static binaries can only be supported by
recompilation, whereas already produced dynamic binaries can also be supported as
long as they are linked against a proper library. Since with a POSIX compatibility
layer static binaries require toolchain adjustments and because one goal of this is
work to prevent them for application software, this design approach is not optimal.
Therefore, I decided for another approach, which I discuss in the following.

First-Class Citizens With a Foreign System-Call Policy In User Space

This section corresponds to approach 2.c) of Section 3.1.1 on page 40. Since Hedron
is a microkernel and should remain one, Hedron cannot emulate foreign system calls
itself. Instead, Hedron can forward foreign system calls to a user-space component.
This component is called emulation layer or OS personality in the following. If
Hedron catches all system calls for native and foreign applications directly, which
is in contrast to the approach 2.b) described earlier, both static and dynamic
unmodified foreign applications can be supported. Furthermore, hard-coded foreign
system calls outside the standard library are supported as well. This unifies any
maintenance work to catch foreign system calls to one single interface: the system
call handler in Hedron.

44 / 110 CHAPTER 3. DESIGN

Figure 3.1: Overview of a foreign application running as first-class citizen that
performs a Linux write() system call, which is caught by Hedron and
delivered to user space. The communication path follows my discussed
design 2.c). The Linux emulation component handles this call and
replies eventually. For each IPC step a context switch is required.

Supporting foreign system calls in Hedron needs a mechanism that enables the
discovery of foreign system calls and distinguish them from native ones. If a foreign
system call is detected, Hedron has to forward it to a user-space component that
implements a policy. Figure 3.1 shows how the communication path for a foreign
system call looks like. It visualizes a simplified version of how a Linux application
running as first-class citizen writes to a file and how the write system call is handled.
Inside the figure, the Linux application performs a write() system call. Hedron can
be modified to know if a system call originates from a “foreign” Protection Domain
(PD). The system call is forwarded to the Linux OS personality. The Linux OS
personality sees that it should forward the request to the file-system service. The
latter replies to the OS personality and the personality finishes the foreign system
call with a final reply() system call eventually.

The existing IPC mechanism of Hedron can be reused for the forwarding of the
system call to the OS personality so that a foreign system call is handled similar to
exception IPC. Relevant CPU state, such as all the general-purpose registers, can
be transferred through the UTCB, as described in Section 2.3.4 on page 31.

The PT callback that handles the foreign system call can point to any component
inside the runtime system. When the emulation layer handles a foreign system call
it knows whether the foreign application made a Linux, a Microsoft Windows, or
a macOS system call because the emulation layer knows the application’s context.
For different OS ABIs it might take multiple dedicated OS personality components.
Once the OS personality receives the request, the request can be forwarded further,
for example to the file-system service, as shown in Figure 3.1.

In contrast to the discussed para-virtualized VM design that reuses the guest
OS, reaching binary compatibility with this design is challenging. On the other

3.1. ENABLING FOREIGN APPLICATIONS 45 / 110

hand, benefits are that there are no costly VM exits or entries, and it does not
require maintaining Linux patches or patches to a POSIX compatibility layer. The
changes to Hedron to detect foreign system calls are onetime costs whereas the OS
personalities will require frequent maintenance to keep up with the latest upstream
changes. Since the implementation goal of this work is not full Linux binary com-
patibility, but the ability to run simple Linux applications, and foreign application
software can be supported as it is, i.e., unmodified, I chose approach (2.c).

In the next sections, I discuss concrete design decisions that build on the approach
of running foreign applications as first-class citizens with a foreign system-call policy
in user space.

3.1.2 Modifications to the PD-Object in Hedron
In this section, I discuss changes to the Protection Domain (PD) kernel object that
enables the system call handler to distinguish “foreign” from “native” system calls.
The PD models in combination with global ECs and corresponding SCs what is
known as process. It acts as a resource container. Since the binary becomes a
process during runtime, the PD kernel object can be modified to know whether
it is “foreign” or “native”. This information can be transferred on PD creation
(create_pd() system call).

The control flow in Hedron’s system call handler can be altered with the infor-
mation if the PD that belongs to the EC that triggered a system call is “foreign”
or “native”. If Hedron sees that it should not handle a system call natively because
it originates from a foreign application, Hedron should forward the system call to
a specified Portal (PT) via kernel-initiated exception IPC instead. Exception IPC
includes relevant CPU state in the UTCB, as described in Section 2.3.4 on page 31.
The PD needs a new property to know which PT should be used for that. This
information can also be transferred during object creation (create_pd() system
call).

The OS personality, the target of that IPC, must implement the policy in user
space that emulates the expected behaviour of the foreign OS. The mechanism to
use exception IPC to handle system calls is similar to the proposed approach in
Fuchsia with starnix [30].

3.1.3 Handling Foreign System Calls in User Space
In the previous section, I discussed what changes enable Hedron to forward a foreign
system call to the userland. In this section, I discuss how the userland has to cope
with this request.

When the OS personality starts its execution, it needs to figure out what foreign
system call was executed. It will receive the whole CPU state of the original system
caller including relevant information, such as a system call number and arguments,
from the UTCB. Afterwards, it needs to map the desired functionality onto available
runtime services. When the user space handler is done, it can finish the foreign

46 / 110 CHAPTER 3. DESIGN

system call with a reply() system call eventually. Hedron updates the CPU state
of the caller with new values from the UTCB.

The foreign system-call handler component can use all existing runtime services,
such as the memory allocator or the logging service, before it replies to a foreign
system call. Hence, the foreign system-call handler running in user space is the
place where the integration into the existing runtime system happens. As example,
a Linux mmap() or brk() system call can be mapped onto the memory allocation
service of the runtime environment.

3.1.4 Need for Mediators
On a high level, my work aims to translate between the world of Hedron with its
runtime environment and several incompatible foreign worlds. With my chosen de-
sign (2.c); see Section 3.1.1 on page 43), the entry into the user space for a system
call is specified by a Portal (PT). This PT must belong to a mediator that handles
the foreign system call, as described in Section 3.1.3 on the preceding page. Thus,
the OS personality respectively the emulation layer component fulfils the role of
this mediator. Depending on the foreign system call ABI this translation may vary
in complexity.

Mediators are expected to hold relevant state about foreign applications. For
example, Linux uses file descriptors. Runtime services, such as the file-system
service, may have internal data structures to keep track of open files too. However,
this is not necessarily compatible with the file descriptor model used by Linux
or whatever the corresponding foreign OS is. Hence, the role of the mediator
is not only to translate system calls from one world to another but also to map
management structures from one world to another and keep track of them.

Additionally, the mediator must bridge the gap between the privilege-model of
the foreign system and the capability-based world of Hedron. A practical solution
might be that the mediator receives all capabilities necessary but enforces an in-
ternal policy with corresponding bookkeeping to hand out permissions to foreign
applications as needed. The OS personality must be trusted to ensure a simul-
taneous execution of multiple foreign application within its responsibility without
tampering with them.

A big variety of OSs, such as UNIX, expects user-memory addresses as arguments
for many system calls. The calling application relies on that the kernel reads
from these addresses or writes to them. An example is the UNIX system call
write() [39].

sys_write(unsigned int fd, const char __user *buf, size_t count)

A runtime system under Hedron will be constructed in a way that most interfaces
expect relevant IPC payload embedded inside the UTCB for better performance.
This is intended by Hedrons IPC design. There might be reasonable exceptions
where usually larger amounts of data are expected, such as file transfers. In this

3.1. ENABLING FOREIGN APPLICATIONS 47 / 110

case, shared memory is a more performant solution for a service interface. Whatever
the interface looks like, the mediator can bridge the gap between those two worlds.
To name one example, parameters from a Linux write() do not necessarily map 1:1
to the corresponding functionality inside the runtime environment. The mediator
sees what parameters a foreign application passes, translates them if necessary, and
forwards the request to the right runtime service.

To enforce strong safety guarantees, the mediator should never map memory
pages from the application to the service. If the application performs a write system
call and the file-system service offers a similar interface, the mediator should intro-
duce a dedicated receive and send window that is page-aligned. Memory mappings
can only be granted at the granularity of a page. Without a dedicated window, it
might happen that the file-system service gains access to the stack of an application
because the data of the write operation lies in the middle of a stack page.

Figure 3.1 on page 44 shows the practical relevance of the OS personality acting
as mediator. A Linux application (shown left) wants to write to the file system.
The figure shows the communication path of that request. If the mediator is a
dedicated PD as shown in the figure then it takes four cross-PD context switches
from the beginning of the request to the delivery of the response.

Possible Optimization

This overhead can be reduced with the following approach. Functionality from
the mediator component can be moved into a library. The mediator can map this
library into the address space of a foreign application on program startup. This
happens transparently during runtime and foreign applications will never know
about this. The library contains the PT entry point to which Hedron will forward
foreign system calls. As a result, it requires two less expensive cross-PD context
switches, as you can see in Figure 3.2 on the following page. They are replaced with
lightweight PD-internal context switches (no need to switch the address space).

The proposed optimization works as long as the mediator library can maintain
all important state by itself. Once state from other Linux applications is required,
for example when writing to a pipe, it is necessary to talk with other components
of the system, such as the Linux mediator or a pipe service. This depends on the
implementation of the runtime system.

48 / 110 CHAPTER 3. DESIGN

Figure 3.2: Optimized version of the architecture shown in Figure 3.1 on page 44
where two less expensive context switches are required because the me-
diator library lives inside the same address space (highlighted in yellow).
An expensive cross-PD context switch is still required when talking with
the file-system service. In this example, the Linux mediator component
that is running as dedicated PD, is not involved. However, it may be
called by the mediator library in some cases e.g. to retrieve or update
state.

3.2. ENABLING HYBRID APPLICATIONS 49 / 110

3.1.5 Implications and Limitations for Foreign Applications

Taking Linux es example, not all libc interfaces are suited for a 1:1 mapping to
Hedron functionality if they violate certain security concerns of a microkernel-
based systems. Thus, the OS personality may not emulate certain system calls.
An example might be the libc function fork(). The following quote summarizes
problems of it:

Fork is an anachronism: a relic from another era that is out of place
in modern systems where it has a pernicious and detrimental impact.
As a community, our familiarity with fork can blind us to its faults.
Generally acknowledged problems with fork include that it is not thread-
safe, it is inefficient and unscalable, and it introduces security concerns.
Beyond these limitations, fork has lost its classic simplicity; it today
impacts all the other operating system abstractions with which it was
once orthogonal. – Quote taken from “A fork() in the road” [3]

Thus, a runtime system for Hedron will never be designed to be 100% libc com-
patible for security reasons and boundaries of Hedron. Application developers need
to cope with that and refactor some parts of their applications to use functions
from a Hedron library instead of functions such as fork(). An alternative may be
the libc function posix_spawn() which implements fork-like semantic.

It depends on the use case of a runtime system how the trade-offs between con-
venience/compatibility and security are weighted. As I focus on the execution of
simple Linux applications, I leave this question for future work.

3.2 Enabling Hybrid Applications

In Section 3.1 on page 39, I decided for an approach where Hedron’s system-call
handler is responsible for foreign system calls. In this section, I discuss several
strategies to solve the other major design challenge of my work: Enabling hybrid
parts inside foreign applications. The discussed strategies are compatible with the
design decisions I made so far. After the discussion, I explain what strategy I chose
for this design challenge and why I made this decision.

Enabling native system calls from foreign applications, i.e., hybrid applications,
means that Hedron’s system-call handler must distinguish foreign system calls from
native ones, if they come from a foreign PD. As discussed in Section 3.1.2 on page 45,
Hedron knows if a system call originates from a native or a foreign PD. Hence, this
mechanism only needs to do work if the PD is a foreign PD. Figure 3.3 on the next
page shows the required system-call control flow inside Hedron for native, foreign,
and hybrid applications.

50 / 110 CHAPTER 3. DESIGN

Figure 3.3: Flow chart of modified system-call handling inside Hedron for native,
foreign, and hybrid applications. First, the kernel checks if the system
call originates from a foreign PD. If this is not the case, Hedron processes
the system call in the regular way (yellow box). Otherwise, Hedron
checks if the foreign application made a native system call. If so, it
forwards the request to the regular processing (blue box). If it is a
foreign system call, the handler forwards the request to the specialized
foreign system-call PT (red box).

3.2.1 Identify Hedron System Calls from Foreign Apps

A generic solution to distinguish native system calls from foreign applications is
challenging because system-call ABIs can be overlapping (see Table 2.2 on page 33).
This section discusses several approaches how this can be achieved.

Register-based

System-call ABIs might overlap and one register that is unused in one ABI might
be used by another. Hence, using a magic value in a specific register is not generic
enough. One could instruct Hedron to check one register of a hard-coded selection
of registers for a magic value. However, this is not generic. It might happen that
an application stores the magic value as part of its working set of variables in that
register while it performs a foreign system call. Hedron will falsely assume it is
a native system call in such a situation. A register-based approach is not solid
enough.

3.2. ENABLING HYBRID APPLICATIONS 51 / 110

Identify System Call Origin By Address

After a system call is triggered with the syscall instruction on x86_64 the register
rcx contains rip + 2. This is the instruction pointer at the address that caused
the system call plus two bytes which is the length of the syscall instruction. Thus,
Hedron can find at which address a system call originates. If the system call was
triggered from a foreign PD and is within a special range, this special range can
mark all system calls as native system calls.

This is similar to an approach proposed for Linux to distinguish
Microsoft Windows system calls from Linux system calls in the WINE project [5]
and also similar to a mechanism in OpenBSD [28].

However, identifying system calls by their origin address requires work from the
dynamic linker when a hybrid application is loaded because all native system calls
must be behind a dynamically linked library. The loader can load this library
into a specific address range known to Hedron. However, this may clash with
addresses the program needs for itself. This can be solved by making the library
code position independent and telling Hedron at which address range the library
that triggers native system calls is loaded. This adds complexity to the linker.
Furthermore, developers of hybrid applications must dynamically link against a
“hedron standard library”. This approach is complicated and restricts application
developers.

A Field Inside The UTCB

In Hedron each EC has its dedicated UTCB, as shown in Figure 2.3 on page 31.
The UTCB is always mapped inside Hedron, so Hedron can always access it during
a system call. A foreign application will not know about its UTCB but the hybrid
part of a hybrid application can. The UTCB header can be modified to contain
a new field used for flags that affect the system-call behaviour. Before the hybrid
code performs a Hedron-native system call, the hybrid application must set a bit of
this field to true. During a system call, this bit tells Hedron to handle a system call
as native one even if it comes from a foreign PD. Otherwise, it is a foreign system
call (see Figure 3.3 on the facing page). The toggling of the bit can be hidden
behind a “hedron standard library”.

The UTCB is an already existing infrastructure that can easily be accessed in
user space and kernel space. Each EC has a dedicated UTCB, as explained in
Section 2.3.4 on page 31. Using a flag in the UTCB outweighs the negative aspects
of the register-based approach and the one that checks the origin of system calls.
The UTCB head must be modified in a way so that it includes a flag that Hedron
can check. This flag indicates whether a system call is a native one even if it comes
from a foreign application. I refer to this flag from now on as Native System Call
Toggle (NSCT).

52 / 110 CHAPTER 3. DESIGN

3.2.2 Implications and Limitations for Hybrid Applications
The hybrid parts of foreign applications must activate the NSCT before each
Hedron-native system call and deactivate it afterwards. Otherwise, undefined be-
haviour will happen, i.e., unexpected system calls or exceptions are triggered.

Foreign applications can use the typical testing suites and utilities available for
their respective platforms, except for the hybrid part, i.e., Hedron-native system
calls. A test infrastructure for this is not covered by this thesis. Developers need to
deactivate the hybrid part or emulate the Hedron behaviour manually when they
execute tests or run the binary on the native foreign platform.

3.3 Emulating a Relevant Portion of Linux
In Section 3.1 on page 39 and Section 3.2 on page 49, I described the design of
a policy-free system-call layer that fulfills the goals specified in Section 1.2 on
page 23. The design decisions I made have an influence on how to reach binary
compatibility. In this section, I discuss relevant design to emulate a relevant portion
of Linux in user space, i.e., how to design a Linux OS personality. The section covers
required functionality and environmental requirements to start and execute Linux
applications.

3.3.1 Important System Calls
At first, I investigate relevant Linux system calls that are required to start and run
several basic “Hello World”-programs. By using the strace utility, I can deduce the
minimum functionality the runtime environment has to provide for the system-call
layer. Table 3.1 on the next page summarizes the observed findings. It shows which
system calls several “Hello World”-programs compiled with different compilers for
different languages use at runtime. Each binary was build as static binary. The
programs written in Rust and C are both explicitly linked against musl.

As Table 3.1 on the facing page shows, many system calls are triggered during
execution, although the programs just print “hello world” to the screen. The reasons
for this is that all programs have a small runtime which is not visible in source code
but attached to the program during the linking step. On Linux, this startup routine
comes from the libc. This is the code that initially starts executing and eventually
calls main(). Rust programs under Linux are also linked against libc. Rust builds
its own runtime between the one from libc and the actual entry point into a Rust
program.

The table shows that the runtime of Go uses complex system calls, such as clone
and futex. Therefore, Go is out of scope of this work.

3.3. EMULATING A RELEVANT PORTION OF LINUX 53 / 110

Syscall C Go Rust Zig
arch_prctl 1x 1x 1x 1x
brk - - 2x -
clone - 3x - -
close - 1x - -
exit_group 1x 1x 1x 1x
ioctl 1x - - -
fcntl - 3x - -
futex - 1-4x* - -
gettid - 1x - -
mmap - 8x 2x -
mprotect - - 1x -
munmap - - 1x -
read - 1x - -
readlinkat - 1x - -
poll - - 1x -
prlimit64 - - - 1x
rt_sigaction - 114x 5x -
rt_sigprocmask - 6-10x* 3x -
set_tid_address 1x - 1x -
sched_getaffinity - 1x - -
sigaltstack - 2x 3x -
write - 1x 1x 1x
writev 1x - - -
Compiler version 9.3.0 1.13.8 1.55.0 0.81
libc version musl@1.2.2 bundled go libc musl@1.2.2 bundled zig libc

Table 3.1: Overview of required system calls from several static “Hello World”-
binaries on Linux. There are differences between binaries because each
language comes with its own runtime. Results marked with * mean the
occurrence is variable, thus, changes from run to run. The count of each
system call does not necessarily increase the complexity in the emulation
layer and stands here for informational completeness. The table might
look slightly different if another libc implementation than musl is used.

54 / 110 CHAPTER 3. DESIGN

3.3.2 Constructing the Initial Linux Stack Layout
In Section 2.7.1 on page 34, I described the initial stack layout that Linux creates
for applications. The layout is tricky to create because the creation happens from
the loaders address space, whereas the absolute pointers inside the layout have to be
valid within the loaded application’s address space. This can be solved by having a
data structure that keeps track of pointers in both address spaces, which ensures the
right pointer lands at the expected place. For example, that the argv[0]-pointer
points to the correct address in the address space of the application.

3.3.3 Sending Signals
As described in Section 2.7.2 on page 36, Linux checks during a context switch to
a process if there are pending signals. The runtime environment does not have the
ability to intercept at this point because scheduling and context switches are in the
responsibility of Hedron. Hence, sending signals to Linux processes is not easy to
solve.

Signals are complex and out of scope of this work. In the following, I discuss
two approaches how signals might be implemented with the existing Hedron mech-
anisms. The discussion gives a few pointers to relevant problems but the solution
of these problems is future work.

Approach A: Use Recall-Exception

A naive approach may be to use the ec_ctrl_recall() system call, i.e., raise a
recall-exception, to handle signals. This will cause the global EC that was specified
in the corresponding ec_ctrl_recall() system call to trigger its recall-exception.
The corresponding handler will be invoked via exception IPC. This handler must
live inside the Linux emulation layer. For example, if a SIGINT is raised for a foreign
process, the Linux emulation layer performs a ec_ctrl_recall() system call to
force the target global EC specified by the system call into its recall-exception
handler. The global EC must belong to the PD of the Linux process. Since Linux
delivers signals per process but not per thread, the Linux OS personality can select
any of the available global ECs. When the emulation layer handles the recall-
exception, it can alter the CPU state as described in Section 2.3.4 on page 31.
For example, it prepares a special stack frame required for signal handling and set
the instruction pointer to a corresponding signal handler that the user application
specified beforehand.

This approach comes with two problems. First, it prevents a foreign Linux appli-
cation from handling recall-exceptions itself. Second, if all available global ECs are
blocked by a system call, the signal cannot be delivered until one unblocks. Hedron
is as it is at the time of this thesis not capable of finding if and why a certain global
EC is blocked. Thus, currently user-space components including the roottask have
no way to find out which global EC is not blocked, i.e., available, at the moment of

3.3. EMULATING A RELEVANT PORTION OF LINUX 55 / 110

signal delivery. This is in contrast to Linux which can unblock and abort certain
system calls and return to userland with an EINTR error code. Implementations of
libc handles this and may restart the aborted system call.

Let us assume that modifications to Hedron enable user-space mechanisms that
allow a detection of blocked global ECs. Still, to support aborting of Linux sys-
tem calls all included userland components involved in a foreign system call must
either be capable of aborting certain system calls and a subsequent restart or be
idempotent regarding their operations.

Approach B: Use a Dedicated Global EC

Instead of using the recall exception to deliver signals, another approach for sending
and handling signals is to use a dedicated global EC per foreign application. This
global EC receives its time slice from a corresponding Scheduling Context (SC). It
needs a small portion of initialization code that is independent from the foreign ap-
plication. This code would have to put itself into sleep by using a Semaphore (SM).
The Linux OS personality may unblock the semaphore and tell the handler infor-
mation about a signal through shared memory. This solution is applicable because
signals make no assumptions about the thread that handles a signal. However, a
problem which arises from this approach is that a single threaded Linux application
may not synchronize access to global data structures in its signal handler because
it relies on that two units of execution never operate on the same data in parallel.
Thus, this approach breaks existing semantics.

Signals That Are Not Sent to Linux Apps (SIGKILL)

Some signals such as SIGKILL cannot be caught by a Linux application. Instead,
Linux uses it to immediately kill a process. With the current design of Hedron,
resources cannot be freed when they are blocked. If an EC of the application that
should be killed is blocked by a semaphore, the EC cannot be freed. Hedron has no
mechanism that enables the release of blocked resources. Hence, if a EC is blocked,
corresponding kernel objects, at minimum the blocked EC and its corresponding
PD, cannot be freed because there will be references inside the kernel to them.
Thus, the Linux application are not killable by a signal.

56 / 110 CHAPTER 3. DESIGN

3.4 Summary
In this chapter, I introduced multiple approaches about how to enable foreign ap-
plications under Hedron. I decided to enable them as first-class citizens side-by-side
with native applications. Hedron catches all system calls at its system-call entry,
which enables static as well as dynamic unmodified foreign binaries next to na-
tive ones. Hedron detects foreign system calls and forwards them to an user-space
handler which implements the policy to handle those system calls. Multiple OS per-
sonalities can exist concurrently. In real world scenarios, applications might need
to avoid using certain functions for security reasons, such as the fork() primitive.

If a foreign application has hybrid parts, i.e., a hybrid application, it must set
the Native System Call Toggle (NSCT) inside the UTCB to tell Hedron to treat
the next system call as native system call. The userland is responsible to set up
the relevant environmental conditions for foreign applications, such as the initial
stack layout for Linux applications.

Implementation 4
This section provides a detailed overview of various aspects of my implementation.
At first, I describe the modifications required for Hedron. Afterwards, I talk about
the custom runtime system in Rust that includes the Linux OS personality.

4.1 Changes To Hedron
In Section 3.1.2 on page 45, I discussed that the PD-object needs modifications
to distinguish foreign PDs from native ones. In Section 3.2.1 on page 51, I talked
about the Native System Call Toggle (NSCT) that is required for detecting native
system calls from hybrid applications. This section discusses my changes to Hedron
that implement these design ideas.

I modified Hedron so that it can recognize foreign system calls and deliver them
to a user-space component via IPC. These changes require less than 30 additional
or modified SLOC (without comments and empty lines). In this process, I added
two new properties to the PD kernel object:

• bool is_foreign_application

• mword syscall_handler_pt_base

To transfer the system call with its parameters to a user-space component that
enforces a policy, Hedron checks whether a PD is foreign and if the NSCT is false
inside its system-call handler (see Figure 3.3 on page 50). If so, it calculates the
capability selector for the destination PT and sends a kernel-initiated IPC message
to it. The full CPU state of the caller is transferred via the UTCB. The user-space
component will handle the PT call similar to regular exceptions. The heart of
the flexible policy-free system-call layer is shown in Listing 4.1 on the next page.
Inside sys_foreign_syscall(), Hedron finds the right capability selector of the
destination PT. It does this by adding the two values:

current()->pd->syscall_handler_pt_base and current()->cpu.

If a foreign system call is recognized, Hedron sends a message to the PT that is
responsible for foreign system calls on the right CPU (PTs are CPU-local). Since the
special exception data layout is copied into the UTCB (Section 2.3.4 on page 31),

57

58 / 110 CHAPTER 4. IMPLEMENTATION

1 void Ec::syscall_handler()
2 {
3 bool foreign_pd = current()->pd->is_foreign_pd;
4 bool nsct = current()->utcb->nsct();
5

6 if (EXPECT_FALSE(foreign_pd && !nsct)) {
7 // sends IPC msg to userspace; function doesn't return
8 sys_foreign_syscall();
9 }

10

11 switch (current()->sys_regs()->id()) {
12 // regular syscall procedure
13 // ...

Listing 4.1: Snippet from Hedron’s system call handler with my modifications. It
shows the relevant additions that check if a certain system call is a
foreign system call or a native one. Afterwards, it invokes the proper
next handler function.

Hedron makes sure that the OS personality has relevant access to the CPU state
of the caller when it receives the IPC call.

The user space must make sure that a proper Message Transfer Descriptor (MTD)
is assigned to the syscall handler PTs when they are created, as described in Sec-
tion 2.3.4 on page 31.

Furthermore, I modified Hedron’s create_pd() system call to carry a new addi-
tional argument. This argument encodes if the new PD is a foreign PD and if so,
what the base selector for foreign system-call IPC is.

4.2 Runtime System
The major engineering effort was the runtime system, which I wrote from scratch
in Rust. There were no specific reasons to either keep or drop the existing runtime
system written in C++, but the opportunity to use Rust with Cargo as productive
and developer-friendly build environment resulted in the decision to start from
scratch. The runtime system includes the Rust libraries libhedron and libhrstd as
well as the roottask that provides several runtime services.

libhedron contains all important constants, type definitions, and system call
wrappers for Hedron. libhrstd takes the role of the standard library. It contains
common abstractions for memory, UTCB handling, IPC, and more. It can be used
by Hedron-native Rust applications or by hybrid applications written in Rust. Ap-
plications can locate PTs of well-known runtime systems with it and communicate

4.2. RUNTIME SYSTEM 59 / 110

with them. libhedron enables to serialize arbitrary data into the UTCB and deseri-
alize data from there. libhrstd provides abstractions to either embed IPC payload
or to transfer a user pointer with the corresponding length of the data structure.

4.2.1 Well-Known Runtime Services
My runtime system offers an allocator service, a logging service, an in-memory file-
system service, a foreign system-call handler service (the Linux OS personality),
and an exception handler service. For simplicity, all services are located inside the
roottask and exposed via PTs to other PDs.

Furthermore, my runtime system offers two services called “echo” and
“‘raw’ echo”. They are useful to measure several IPC metrics and are discussed
later in the evaluation in Section 5.3 on page 75.

4.2.2 In-Memory File-System Service
The current implementation of the roottask also contains the in-memory file-system
service. This design choice was made by myself for simplicity. Its interface is close
to the typical file interface of POSIX. This means that open(), read(), write(),
lseek(), and close() use the same parameters as Linux and other UNIX-like and
POSIX-compliant systems. I chose this design because this interface is well-known
to software developers. Furthermore, it simplifies the mapping from the Linux
world to the Hedron world.

4.2.3 Process Management
libhrstd contains convenient structs that are wrappers around Hedron kernel ob-
jects, namely Protection Domains (PDs), Portals (PTs), Semaphores (SMs), Exe-
cution Contexts (ECs), and Scheduling Contexts (SCs) (explained on Section 2.3.3
on page 29).

With properties of type Rc<ObjType> and Weak<ObjType> all structs can hold
references to sub and parent objects. I described these Rust abstractions briefly in
Section 2.9 on page 37.

A process is an abstraction of my runtime environment that wraps a PD ob-
ject. Additionally, it contains information, such as the ELF file, the name of the
executable, and its parent process. This relation is shown in Figure 4.1 on the
next page. The roottask knows a struct Process that wraps around the struct
PdObject. With the relations shown in the figures, all relevant information about
related objects can always be obtained. For example, if a PT was called, this model
can be used to determine which PD it was delegated to. My process model assumes
that PTs are not used by multiple PDs but created individually for each PD.

Figure 4.1 on the following page omits that a PD can contain capabilities to all
kinds of kernel objects for simplicity but the important delegation of PTs to PDs
is shown on the right side.

60 / 110 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Process modeling inside the Rust runtime environment. The
roottask manages the process manager, which manages pro-
cesses. A process is a convenient wrapper around a PdObject.
{Pd,{Global,Local}EC,SC,Pt}Objects are Rust types that are con-
venient runtime helpers for the underlying Hedron kernel objects plus
corresponding system calls. Via smart pointers all objects can refer to
other objects in a useful way. For example, this modeling helps to find
the process where a PT was delegated to, when it was called. Hence,
the calling process of an IPC.

4.2.4 Identifying the Origin of Portal Calls

Each PtObject has two important properties in my runtime system: a unique 64-
bit long ID and a context object. The ID is used to identify the PtObject of a PT
call. Hedron passes this ID as first argument to PT handlers. The roottask uses
one generic entry for all PT calls. The ID is used to look up the actual PtObject in
the ProcessManager. From that, I can check to which PdObject it was delegated
to. I assume that a PT is only delegated to at most one other PD and only used by
that one. From the context object that is attached to each PtObject I can check
which specialized IPC handler should be invoked. Listing 4.2 on the next page
gives a closer look at this context object.

The generic portal callback accumulates the right mutable UTCB reference, the
calling process object, and some other relevant information. It passes all relevant
data structures to the specialized IPC handler.

4.3. HANDLE FOREIGN SYSTEM CALLS 61 / 110

1 pub enum PtCtx {
2 Exception(u64),
3 Service(ServiceId),
4 ForeignSyscall,
5 }

Listing 4.2: The snippet shows the context enum that is attached to each PtO-
bject. The exception-variant carries the number of the exception, for
example 0x6 for invalid opcode. If the portal references a service, the
context object holds the ID of the requested service (e.g. allocator,
stdout). In the case of foreign system calls, the request is forwarded to
the OS personality that must figure out which foreign system call was
triggered (by using the data provided by the exception data layout in
the UTCB.).

4.3 Handle Foreign System Calls
The roottask knows if an application that it starts is a foreign or a native one.
When it creates the PD, it passes that information to Hedron. On a foreign system
call, the foreign system-call handler within the roottask is invoked by the generic
PT entry handler discussed in Section 4.2.4 on the facing page. It checks the abi-
property1 of the corresponding Process object. The foreign system-call handler
then forwards the request to the specialized OS-personality (also inside the root-
task). The Linux OS-personality constructs a GenericLinuxSyscall-struct from
the CPU state stored in the UTCB. This struct reads the register values and helps
to access the system call arguments in correct order (as in Table 2.2 on page 33).
The Linux OS-personality further process the desired Linux system call. It updates
the registers as needed, read and write to user memory as needed, and returns to
the generic PT entry function. For example, the result code is stored in register
rax. Finally, reply() is executed by the generic portal entry and Hedron updates
the CPU state of the original caller.

Section 9.4 on page 99 lists the supported Linux system calls of the current
implementation of my OS personality.

1Currently, the implementation only knows Linux as foreign system call ABI. However, my
implementation is extendable.

62 / 110 CHAPTER 4. IMPLEMENTATION

4.4 Hybrid Parts in Foreign Application
Foreign Rust applications can include the libhrstd library with a special Cargo
build-time feature that tells the library to use the bindings for foreign applications.
Therefore, an application can make Hedron-native system calls and thus become
hybrid. The OS personality provides a special environment variable for foreign
applications which allows them to detect if they are running under Hedron. Thus,
the code of hybrid applications can run under Linux without requesting Hedron
functionality but unfold all its functionality under Hedron. Listing 9.4 on page 97
shows an example of such a hybrid application.

The runtime environment itself will never know if a foreign application invokes
Hedron-native system calls because this is entirely handled between Hedron and the
code running inside the corresponding PD. The userland starts hybrid applications
in the same way as foreign applications.

Currently, hybrid applications need to toggle the Native System Call Toggle
(NSCT) before and after Hedron-native system calls. A possible simplification is
that Hedron resets the NSCT after each system call. This adds a policy to Hedron
and therefore I decided against it. However, if this mechanism is developed further
until it lands in a product eventually, I see no reason why Hedron should not reset
the flag on each system call if it is set. This operation is cheap and it prevents
errors in user space caused by forgetting to reset the NSCT. Resetting the flag in
Hedron will not increase complexity in kernel space and will not prevent flexibility
in user space.

4.5 Communication Path: Native vs Foreign
In this section, I give a short overview about the communication path that native
and foreign applications take to access system resources in my current runtime sys-
tem. This summarizes many design choices and implementation steps. Figures 4.2
to 4.3 on the facing page visualizes the communication paths by native applica-
tions and foreign applications through their corresponding default file interface.
Both figures show an application that uses the file-system service to write to a file.
The first figure shows that for a native application whereas the latter shows it for
a foreign Linux application. It is visible that a foreign system call is handled like
regular IPC to a PT.

In a real world scenario, the implementation will be split into separate compo-
nents, i.e., not all services are provided by the roottask. However, to show that
my mechanism works, I took this shortcut. Figure 3.1 on page 44 provided earlier
presents how the communication path looks like if the file-system services runs in
its own PD.

4.5. COMMUNICATION PATH: NATIVE VS FOREIGN 63 / 110

Figure 4.2: Overview of a native application that interacts with the file-system
service. The app shown on the right side calls the PT of the file-system
(FS) service to write data. If a hybrid application interacts directly
with the Hedron runtime system, it will look similar. However, this
is not necessarily intended or beneficial from a code point of view but
technically possible.

Figure 4.3: Overview of a foreign Linux application that interacts with the file-
system service. The app shown on the right side executes a write()
system call. Hedron recognizes the foreign system call and forwards
it to the Linux OS emulation component. The Linux OS personality
performs the file descriptor multiplexing, sees that the file descriptor
belongs to a real file, and forwards the request to the file-system service.

64 / 110 CHAPTER 4. IMPLEMENTATION

4.6 Implementation Challenges
In this section, I briefly present selected challenges that I faced during the engi-
neering of this work.

libhrstd is a Rust library intended for native applications and hybrid applications.
By activating the right Cargo build-time feature, the library either wraps system
calls with the Native System Call Toggle (NSCT) for foreign applications or ignores
the toggle for native applications. I point out a programming challenge I have
encountered in the engineering of this part.

libhedron exports all system calls as functions. Each system-call function from
libhedron returns a Rust Result<S, E>-type. Inside libhrstd, I provide wrappers
that enable the usage of them in hybrid applications. Let us take a look at List-
ing 4.3 on the facing page. wrap_hedron_syscall is a function that executes the
passed system call function (from libhedron) wrapped by toggles of the NSCT. If
the (Rust) code from Listing 4.3 on the next page code looked like

wrap_hedron_syscall (|| sys_create_pd (/*...*/) .unwrap())

instead of

wrap_hedron_syscall (|| sys_create_pd (/*...*/)) .unwrap()

(notice the ’)’-parentheses), a failed system call will cause a Rust panic before the
NSCT is deactivated again. The reason for this is that Rust’s standard library for
Linux handles a panic by writing a message to stderr before it finally terminates
the program with an exit_group system call. Hence, an .unwrap() on an Err
variant results in undefined behaviour and errors for the Linux application. This
pitfall can completely be abstracted from application developers with the libhrstd.
A user of the public API does not have to cope with this complexity.

4.6. IMPLEMENTATION CHALLENGES 65 / 110

1 /// Part of a library that the hybrid/foreign app can use.
2 fn wrap_hedron_syscall<T, R>(actions: T) -> R
3 where T: Fn() -> R {
4 utcb().set_nsct(true);
5 // NO foreign syscall from here
6 let res = actions();
7 // NO foreign syscall until the next line
8 utcb().set_nsct(false);
9 res

10 }
11

12 /// Part of a library that the hybrid/foreign app can use.
13 fn hedron_create_pd(parent_sel: u64, cap_sel: u64) -> PdObject {
14 // sys_create_pd() comes from libhedron
15 wrap_hedron_syscall(
16 || sys_create_pd(parent_sel, cap_sel)
17).unwrap()
18 }
19

20 // Actual foreign application.
21 fn main() {
22 // hybrid part
23 let parent_pd_sel = ...;
24 let cap_sel = ...;
25 let pd_obj = hedron_create_pd(parent_pd_sel, cap_sel);
26 }

Listing 4.3: Code snippet that shows how to enable and disable the Native System
Call Toggle (NSCT) before and after native system calls in hybrid ap-
plications. This complexity is hidden behind the libhrstd library. For
convenience, some library functions are shown inside the same listing.

66 / 110 CHAPTER 4. IMPLEMENTATION

4.7 Breaking Changes to Hedron API
The changes required for Hedron introduced a breaking API change in the
create_pd() system call as it was extended with a new argument. All existing
applications that use this system call must set the register of the new argument to
zero, otherwise Hedron might think the new PD is a foreign PD. This means there
is a small engineering effort for existing software necessary.

Although Hedron is open source, Hedron is mainly used by Cyberus Technology.
Thus, this code migration is simple to solve if the modifications to Hedron are
merged and used with the existing runtime environment. If my new runtime envi-
ronment is used in the future, it already includes the proper system-call wrappers.

4.8 Summary
In this chapter, I talked about the basic implementation steps I had to take to
implement the discussed design in Chapter 3 on page 39. I described how Hedron
recognizes foreign system calls and how the runtime environment handles them.
Since I have written a new runtime system, I have included additional interesting
implementation details as appendix in Section 9.3 on page 97.

Evaluation 5
In this chapter, I explain and evaluate how the proposed changes to Hedron, paired
with the new runtime environment, fulfill the goals specified in Section 1.2 on
page 23. Furthermore, I examine how my work contributes to Hedron in terms of
performance and developer productivity.

5.1 Functionality and Reliability
Figure 5.1 on the next page shows a screenshot of the serial output from the runtime
environment executing a Linux application. The application is written in Rust
and uses Rust’s standard library. It prints its output to the screen by writing to
stdout. This is handled by the Linux OS personality, which internally uses the
stdout service. Thus, the personality connects write operations from the foreign
application to the stdout service because it sees that the write operation targets
file descriptor 1. The fact that the Linux application comes to this point proves that
my runtime system and its Linux personality are capable of executing several Linux
system calls. See Table 3.1 on page 53 for a list of system calls that are involved here.
For example, the OS personality can perform memory mappings (Linux mmap() and
brk()) requested by the application, and read from user memory (Linux write()).

The current implementation of the runtime system enables the successful execu-
tion of simple Linux applications. They can request heap memory or talk to the
file system with adequate performance. The performance analysis of the file-system
interface and the whole foreign system call mechanism follows shortly in Section 5.3
on page 75. Code examples with useful workloads that are supported can be found
in Section 9.2 on page 93.

As of now, my implementation is not capable of handling complex Linux system
calls, such as clone or futex . Thus, only a small subset of Linux is available at this
time. This is not a limitation of my mechanism for the policy-free system-call layer.

Running a Linux OS personality as a user-space program improves overall live-
liness of the system because, in the worst case, a failure affects only all running
processes managed by that personality. The security of the whole system does
not decrease from my proposed policy-free system call layer, as long as the run-
time system follows typical microkernel principles, such as an isolation of dedicated
components from each other and the principle of the least privilege.

67

68 / 110 CHAPTER 5. EVALUATION

Figure 5.1: Screenshot of the output of a Linux application running under Hedron
that is written in Rust and uses Rust’s standard library. It prints out its
arguments and its environment variables. The same unmodified binary
also works under Linux similar and produces similar output.

5.2 Developer Productivity
In this section, I discuss how my changes affect developer productivity. Devel-
oper productivity is influenced by initial efforts and long-term maintenance costs
required to build software. Furthermore, availability of applicable tooling affects
developer productivity. Questions arise such as how well does my IDE provide
sensible auto-suggestions/completions or how usable is the build system and what
similarities to existing standard build environments exist?

5.2.1 Scope
In this consideration, I assume that developers want to use a diverse set of (existing
or upcoming) applications and libraries for Hedron and that they aim to keep the
projects fresh with the corresponding upstream repositories. Furthermore, I look
on writing new software from scratch. I focus on the programming languages C,
C++, and Rust as examples.

To achieve this, I compare the approach presented in my work with two alterna-
tives. Alternative approach A is about providing a POSIX compatibility layer (or
whatever the default standard library of the foreign system is). It is discussed in
Section 5.2.2 on the next page. Afterwards, I present the alternative approach B
in Section 5.2.3 on page 71 where I discuss how “non-standard” software is build
and what the limitations of this approach are. Finally, Section 5.2.4 on page 74
bridges the gap from the presented alternative approaches A and B to the support
of hybrid and unmodified foreign applications presented in my work. The final

5.2. DEVELOPER PRODUCTIVITY 69 / 110

comparison examines how my presented design solves the inconveniences described
in the upcoming paragraphs.

5.2.2 Approach A: Providing a POSIX Compatibility Layer
Let us assume that developers want to port existing libraries or binaries to Hedron.
A possible approach is to provide a custom libc, i.e., POSIX compatibility layer.
This also works with other well-defined standard libraries such as win32. In Fig-
ure 2.5 on page 37, I showed how a custom libc bridges the gap between an appli-
cation and an (exchangeable) kernel.

A well-defined standard library layer helps to port existing software to a system
such as Hedron without many application code modifications. If a developer uses
this approach, the software must still to be linked against a special Hedron library
in order to be able to use all functionality of Hedron and its runtime system. An
adapted libc is not enough to cover all cases.

Examples for that are the Hedron system calls pt_ctrl() and ec_ctrl(). There
are no suiting libc functions that can be mapped to them. Furthermore, the
libpthread-concept is mappable to global ECs but not to local ECs. To name one
example, code inside a local EC has to restore its stack manually before a reply()
system call, otherwise the EC will overflow its stack eventually. libpthread does not
know a concept to differentiate between different kinds of threads. libpthread is
usually tied to the libc implementation because it needs access to mechanisms such
as thread local storage [27]. So even if an adapted POSIX compatibility layer is
available (including an adapted version of libpthread), local ECs cannot be covered
sensibly.

Additionally, there are further restrictions that I already discussed in Sec-
tion 3.1.5 on page 49. As a brief recap, developers may need to find alternatives
for fork().

The statements above are the reason why an additional library for Hedron is
required to access all functionality of Hedron and its runtime system. A libc alone
is not enough. To include such a library additional steps need to be taken. For
C and C++ projects there are two options. For example, the library’s header files
and the shared object can be bundled in a packaged format, such as a debian
package, and be provided for application developers. This package needs to be
installed on the developer’s system. The content of the package can be referenced
as dependency through additional compiler- and linker flags. Another approach
to include a Hedron library is to provide the hedron library as header-only library
which allows to copy & paste the library into projects easily. This adds additional
work for developers. For Rust projects, a Hedron library can be easily included in
the Cargo.toml1 file via crates.io or through a public git repository.

1The project file for Rust projects. It includes meta information and specifies dependencies
that may be available on crates.io or in public git repositories. Cargo downloads these
dependencies automatically.

crates.io
crates.io

70 / 110 CHAPTER 5. EVALUATION

What functionality will be provided by a custom libc is dependent on the imple-
mentation of the runtime environment running under Hedron. However, challenges
to include this library into the default build setup, such as local setups and contin-
uous integration, is challenging and needs individual work per project. So, in the
following, I discuss how one can achieve that.

Using a custom libc is a toolchain adjustment. One needs to modify the linker
(flags) to link against a different shared object. Popular build tools for C or C++
projects are GNU Automake2 and CMake3. These build tools enforce no policies
about how one should build their software project but only provide tooling to
compose an individual build system. As a consequence, some projects include
header definitions and code side by side and some separate them into dedicated inc/
and src/ folders. This is only one example that shows the variety of possibilities to
build a C- or C++-based project. As a consequence, porting existing code bases to
a new libc is a challenging and individual process. For every update to the upstream
repositories that touches the build system, these steps need to be carefully rebased
onto the latest upstream changes, which is error-prone.

For Rust this is a less inconvenient because Rust projects use Cargo as its default
build tool. Cargo makes strong assumptions about the software project structure
and unifies how additional changes to the build setup, such as special linker flags,
can be provided. This simplifies using “non-standard” build targets, such as when
using a custom libc.

The difference between Rust and C/C++ regarding dependencies is that Cargo
can download dependencies by itself whereas they need to be installed manually
by the systems package manager to be recognized by typical CMake-setups, for
example. Another approach is that the libraries source code is copied into the
project. This adds additional steps for local setups and continuous integration,
which leads to inconvenience.

To link Rust code that uses Rust’s standard library against a custom libc, a cus-
tom compiler target must be defined that links to the specific libc implementation.
This is simple with Cargo because the compiler target specification is modeled
by a JSON-file. This target definition is passed to Cargo through an additional
parameter.

The existing Rust standard library with its bindings for Linux, i.e., libc bindings,
can be reused in that case without changes. This works because the implementation
of the Rust standard library maps its functions to a lower level system library, such
as the libc.4

2https://www.gnu.org/software/automake/
3https://cmake.org/
4Background: If the compiler target specification specifies the field “os” as “linux”, Cargo will

take all compile-time feature branches inside the standard library that conditionally depend
on Linux during the compilation of the binary. Thus, the existing Linux bindings for the Rust
standard library to libc functions can be reused and Rust code uses the custom libc instead.
https://github.com/rust-lang/rust/blob/1.59.0/compiler/rustc_target/src/spec/
linux_base.rs#L5

https://www.gnu.org/software/automake/
https://cmake.org/
https://github.com/rust-lang/rust/blob/1.59.0/compiler/rustc_target/src/spec/linux_base.rs#L5
https://github.com/rust-lang/rust/blob/1.59.0/compiler/rustc_target/src/spec/linux_base.rs#L5

5.2. DEVELOPER PRODUCTIVITY 71 / 110

For C and C++ projects the library files need to be provided manually and
changes to the CMake- or Make-setup are required. The latter is an individual
process per software project whereas it is roughly similar for multiple Rust projects.

All these custom steps require toolchain changes that need to be maintained. For
Rust these are easy to manage and the necessary steps per software project stay
the same. For C and C++ this is an individual maintenance process per project
that is hard to maintain.

In this section, I discussed how a custom libc affects application developer pro-
ductivity. In the following, I discuss how the experience for application developers
looks like when no standard library is used but instead raw/pure “non-standard”
software is produced.

5.2.3 Approach B: Developing “Non-Standard” Software
A “non-standard” build setup does not include the system’s default standard li-
brary. In a Rust crate5 a #![no_std]6 attribute tells that the application should
not be linked against libstd but libcore instead. Cargo recognizes this during
builds. Such a crate does not link against libc when compiled on Linux and only
allows functions operation on pure data. There are no interfaces to the outer world
without additional library functions.

With C and C++ a “non-standard” build setup is in the responsibility of the
build tools/the build system and not defined as an attribute in source code, as in
Rust. These build setups are discussed in the following.

Changes to Build Tools (Toolchain Changes)

Rust uses Cargo as its default build tool. For #![no_std] libraries the Cargo setup
needs no changes. For #![no_std] binaries Cargo needs additional configuration to
use a custom linker script and, depending on the target, possibly a custom Cargo
compiler target definition. There are no more steps involved. If we look at C
and C++ this is different. C and C++ projects using gcc7 for example need the
additional compiler flags -nostdinc, -nostdlib, and -ffreestanding. Makefiles
or CMake-files achieve that by specifying additional flags for the compiler. This
itself is not standardized and there are multiple ways to do it. For example, the
compiler flags can be assembled in multiple steps or at once. They can depend on
certain conditions. For example, a project can produce a convenient library based
on libc and a lightweight “non-standard” version without libc. These changes to
the build tools, i.e., to provide special flags for the compiler, are changes to the

5A Rust library or binary.
6#![no_std] is a crate-level attribute that indicates that the crate will link to the core-

crate instead of the std-crate. The libcore crate in turn is a platform-agnostic subset of
the std crate which makes no assumptions about the system the program will run on.
– https://docs.rust-embedded.org/book/intro/no-std.html

7https://gcc.gnu.org/

https://docs.rust-embedded.org/book/intro/no-std.html
https://gcc.gnu.org/

72 / 110 CHAPTER 5. EVALUATION

default toolchains. Experience shows that this is hard to maintain over time for
multiple projects.

Initial and Ongoing Maintenance Costs

In this section, I discuss initial and ongoing maintenance costs of writing new “non-
standard” software and porting existing software to be “non-standard”-compatible.
I also discuss keeping ported software up-to-date with the corresponding upstream
repositories.

In the discussion about the build tools and toolchain adjustments, I said that
a Rust crate needs the #![no_std]-attribute. This applies for libraries. However,
for #![no_std]-binaries you also need to configure Cargo to use a custom linker
script, specify the #![no_main]8 attribute, and provide a custom compiler target
definition. Experience shows that this process is rather simple compared to the
C and C++ world (will be discussed shortly). The steps mentioned above are
one-time costs.

Long-time costs emerge when existing software for a standard target, i.e., one
that relies on the standard library, is ported. Every new functionality in upstream
repositories needs to be ported carefully. Calls to the standard library that, may
talk to libc, need to be removed and replaced with calls to a Hedron library.

For C and C++ projects the long-term efforts mostly face the same challenges as
for Rust. At least, if only new code is added. When the build system is modified
in the upstream repositories then the costs to keep the altered version for Hedron
up to date are higher. As I already discussed, each C and C++ projects de-facto
have an individual build system which makes it hard to keep them up to date. The
efforts and costs are individually for each project that needs to be ported.

Additional initial costs arise from new developers not being familiar with a
Hedron library that provides a different interface than libc. Developers need to
maintain a mental model about the runtime system and its runtime services and a
situational awareness how specific behaviour may cause errors during runtime.

Convenience Through Available Tooling

The most important tool for a developer is the editor respectively the IDE. Ex-
amples are Vim9, Visual Studio Code10, and CLion11. A IDE helps with auto-
suggestions that fit into the context one is just typing. Hence, the IDE completes
the code where applicable to improve developer experience. In this process it takes
available functions and modules from the standard library and included external
libraries into account.

8Attribute that prevents Rust from emitting a “main” symbol. Otherwise, Rust expects a a
function called main().

9https://www.vim.org/
10https://code.visualstudio.com/
11https://www.jetbrains.com/clion/

https://www.vim.org/
https://code.visualstudio.com/
https://www.jetbrains.com/clion/

5.2. DEVELOPER PRODUCTIVITY 73 / 110

To improve this, IDEs must have knowledge about the type of software one is
writing. This is the reason why there are specialized editors and IDEs for Android
app development, web technology development, or low level systems programming.
There are also generic editors and IDEs that achieve that by providing specialized
plugins. In the following, I focus on CLion to discuss developer convenience with
the help of personal experiences I made in the past and during the work on this
thesis. However, the implications I name in the following are similar for other
tooling. CLion offers built-in support for C and C++ and offers support for Rust
with the IntelliJ Rust12 plugin.

At first, I discuss the convenience of CLion + IntelliJ Rust for “non-standard”
Rust projects and afterwards the convenience of “non-standard” C/C++ projects
with CLion. A Rust projects is classified through its Cargo.toml file that can be
easily detected by an IDE. It is trivial to detect the #![no_std]-attribute in the
Crate’s main file (lib.rs or main.rs). If IntelliJ Rust detects it, CLion completes
my code with imports from core::* or alloc::* instead of std::* - as expected
and desired.

My runtime environment consists of Hedron-native, i.e., “non-standard”, libraries
and binaries, such as the roottask. Thus, this project itself is affected by a lack of
developer experience resulting from “non-standard” targets. During my work on
this project however, I regularly experienced situations in which CLion included
types from std:: instead of core::, even through it works sometimes. I experi-
enced this as negative because I had to fix the IDE that is supposed to help me.
Rust’s design and ecosystem enables IDEs an easy detection for the absence of the
standard library. This works well in most situations but not always.

I experienced that one is limited as a developer without the standard library,
and I had to provide many functionality by myself that are included by default
otherwise. Examples are an allocator or a way to print text to the outer world.

The experience for a “non-standard” build setup with C and C++ is different.
My runtime system itself does not use “non-standard” components written in C
or C++ but I discuss how the convenience looks like with them. As I already
mentioned above in the discussion about build systems, effectively each C and C++
project has an individually customized build system. There is no standardized way
to mark a binary or library as “non-standard” in the C/C++ world. This makes it
hard for IDEs to discover the absence of the standard library. Instead, IDEs tend
to complete functions such as open() and add “#include <fcntl.h>” on the fly.

In a minimal C++ demo project in CLion to verify developer convenience, I added
the line “add_compile_options(-nostdinc -ffreestanding -nostdlib)” to a
CMakeLists.txt-file. CLion did not further suggest including header files from the
standard library and also did not complete functions from there. However, this
setup is minimal and far from the complexity of real world scenarios. As soon
as this statement is wrapped with an if-condition in the CMake-configuration that

12https://www.jetbrains.com/rust/

https://www.jetbrains.com/rust/

74 / 110 CHAPTER 5. EVALUATION

Clion cannot trivially resolve, the convenience is gone and the developer experience
decreased.

In a minimal C++ demo project in CLion based on a trivial Makefile CLion was
not capable of recognizing the absence of the standard library. Thus, developers
do not face a convenient programming environment in such a case.

5.2.4 Comparison to My Presented Work

I assume approach A as suitable for porting existing libraries and binaries to Hedron
whereas approach A and B are suited for new software. Approach B also works for
existing software but the need to replace all libc calls with calls to a Hedron library
is huge.

Above I discussed two approaches how software for Hedron can be build when
the solution presented by my thesis would not exist. Approach A discussed the
developer experience for building software with a custom POSIX compatibility
layer, i.e., a custom libc, whereas Approach B discussed the use of “non-standard”
build setups without a standard library. Afterwards, I deduced implications to
developer convenience and maintenance costs from them. In the following, I discuss
how the mechanism introduced by my thesis avoids the problems I discussed above.

One objective of my work is to enable unmodified foreign applications and avoid
toolchain adjustments for application development. With my solution, application
developers do not need any additional effort to enable their foreign application
under Hedron. If they need access to native Hedron system calls, application de-
velopers have to link against a Hedron library additionally. For this, they need
to learn about the facilities of Hedron’s runtime system. Application developers
can focus on the actual software and not on the build process. At least, they do
not have to focus more on the build process that is beyond the typical setup for
standard binaries. However, developers need to include an additional library to
enable hybrid code inside their foreign applications.

The discussion above is not only about Rust vs C/C++. Rust has a standardized
way for “non-standard” software witch is a major benefit. However, many projects
that exist for decades are based on C and C++. It is not applicable to rewrite
everything in Rust. This will not solve the problems of “non-standard” builds
effectively because the rewrite to Rust itself is an immense effort. Furthermore,
existing C and C++-projects target more Hardware-platforms because they use
gcc instead of LLVM.

Building new “non-standard” software with Rust, which either includes no stan-
dard library or a custom standard library, has major benefits and simplifications
compared to C and C++-based setups. However, the simplest solution for applica-
tion developers is to use the default toolchains as they are. My work enables this
successfully.

5.3. PERFORMANCE 75 / 110

5.3 Performance
On microkernel-based systems, the performance of applications that require in-
teraction with other system components is influenced by IPC costs. If no shared
memory is used but instead Hedron’s message-passing mechanism, context switches
are required. These context switches include cheap PD-internal context switches
and expensive cross-PD context switches. The first only require to update the stack
and the instruction pointer whereas the latter additionally requires an address-space
switch. With each IPC operation the total IPC costs grow. These IPC operations
therefore affect the performance of workloads that use them frequently. One ex-
ample is a foreign Linux application whose system calls are forwarded via IPC to
a mediator and might require additional IPC operations to communicate with the
corresponding OS service.

This section studies the overhead of foreign system calls and analyses the impact
of IPC on its performance. All benchmarks were executed with 10,000 warmup
rounds and 100,000 measurement rounds. The measurement numbers in the di-
agrams and show the average number of clock ticks during the execution of a
workload. I executed each benchmark multiple times and visualize the variance for
each measurement inside the diagrams along with the data.

Each binary, i.e., Hedron, the roottask, and user applications, was built in release
mode and was compiled for the IvyBridge micro-architecture. All measurements
were made on an i7-1165G7 TigerLake Intel CPU. The host operating system is
Ubuntu 20.04 with a Linux 5.13 kernel. The Hedron measurements were taken
inside QEMU at version 6.2 running on the host. QEMU was invoked with the
-cpu=host parameter, thus runs directly on the CPU with activated hardware
virtualization features enabled. The Linux measurements were taken inside the
same QEMU setup but with a virtualized Ubuntu 20.04 with a Linux 5.13 kernel.
Thus, overhead caused by nested paging is relative and affects both measurements
in the same way.

76 / 110 CHAPTER 5. EVALUATION

5.3.1 Pure System-Call Performance
In this section, I discuss the raw system call performance of Hedron. I measured the
costs of the sysenter, the callback inside the kernel, and the succeeding sysret.
I used a cheap pt_ctrl() system call for that. Figure 5.2 shows the measured
system-call costs from a native application and a hybrid application. Both are
running under Hedron. Since the check for the Native System Call Toggle (NSCT),
which was introduced in Section 3.2.1 on page 51, adds a branch instruction, one
can see a minor growth in the system-call costs. For comparison with Linux, I
included the costs of a cheap set_tid_address() Linux system call under native
Linux which you can see on the right.

Native Hedron App (Hybrid) Linux App

0

100

200
124 125

159

C
lo

ck
T

ick
s

executing under Hedron
executing under Linux

Figure 5.2: The figure shows an overview of the pure system-call costs from two
binaries that execute Hedron-native system calls. Under Hedron the
cheap pt_ctrl() system call was used to test the pure system call
handler costs. For comparison to Linux, the right side shows the costs
of a cheap set_tid_address() system call under Linux.

5.3.2 PD-internal and Cross-PD IPC Performance
As described earlier, an important factor influencing the performance of a
microkernel-based system are the IPC costs. Therefore, it is reasonable to as-
sume that all measurements that include IPC, such as the transmission of foreign
system calls to a user-space component, are related to these numbers. Figure 5.3 on
the facing page shows the costs of several IPC variants. I made four measurements
for the properties {Cross-PD IPC, PD-internal IPC}×{Raw, Regular}. By “raw”
I mean the pure Round-Trip Time (RTT) without any actions by the userland ex-
cept for an immediate reply(). These are the pure costs of IPC accountable to
Hedron and the hardware. By “regular” I mean IPC where the control flow goes
through the Portal (PT) multiplexing mechanism introduced in Section 4.2.4 on
page 60. You can see in Figure 5.3 on the facing page that the need to look into
several data structures adds an overhead. The increase from “raw” to “regular”
takes roughly 25% more clock ticks. Cross-Protection Domain IPC is 50% more
expensive compared to PD-internal IPC because of the address-space switch. My

5.3. PERFORMANCE 77 / 110

discussed modifications to Hedron in Section 4.1 on page 57 do not affect these
numbers.

PD-internal Raw IPC PD-internal IPC Cross-PD Raw IPC Cross-PD IPC

0

500

1,000

1,500

791
1,027

1,190

1,574

C
lo

ck
T

ick
s

Figure 5.3: Overview of IPC costs in my runtime system. I measured the Round-
Trip Time (RTT) of a call() system call with a subsequent reply()
system call. Cross-PD IPC is roughly 50% more expensive than PD-
internal IPC because the address space needs to be switched. By “raw”
IPC I mean the pure cost of the system calls combined with Hedron’s
context switches without any additional actions of my runtime system.
The non-“raw” IPC measurements includes the path through my Portal
(PT) multiplexing mechanism described in Section 4.2.4 on page 60 that
add an overhead of roughly 25%.

78 / 110 CHAPTER 5. EVALUATION

5.3.3 Foreign System-Call Performance
In this section, I show several metrics regarding foreign system calls. The costs of a
foreign system call includes the summed times of a native system call, the duration
of the IPC, and the actual emulation of the OS personality. I looked at three
different Linux system calls with varying complexity. set_tid_address() updates
a property inside the process-management structure inside Linux. fstat() fetches
information about a file from the in-memory file system (/tmp in Linux). The
open() system call in this example is used to open an existing file (inside /tmp in
Linux). Figure 5.4 summarizes my observations. As expected, Linux is the fastest
because the control flow path for system calls is shorter in a monolithic system.
The difference decreases for expensive system calls. Linux is more than ten times
faster for a cheap system call but only 60% faster for the open() call. Since my
implementation includes all services inside the roottask as described in Section 4.2
on page 58, I simulated the costs of a mediator library as described in Section 3.1.4
on page 47 additionally. The diagram show that influence side-by-side.

set_tid_address fstat open

0

2,000

4,000

6,000

8,000

10,000

15
9 37
7

5,
08

0

1,
62

8

1,
79

6

5,
57

5

2,
47

0

2,
59

5

8,
06

8

C
lo

ck
T

ick
s

Native Linux
Hedron + Runtime Environment
Hedron + Runtime Environment (with simulated mediator library)

Figure 5.4: Overview of foreign system-call costs from a Linux application. The
additional costs of foreign system calls caused by IPC costs are pre-
sented: the bars showing the time under Hedron are noticeable higher,
which means the execution time is longer.

5.3. PERFORMANCE 79 / 110

5.3.4 File-System Microbenchmark
After I showed several basic performance metrics above, I now present results of
a microbenchmark against the file system. Under Linux the benchmark uses the
/tmp file system. Under my runtime environment it uses the default file-system
implementation that lives in memory.

The benchmark measures read() and write() operations on native Linux and
on my runtime system under Hedron. It reads and writes a file and executes
this multiple times to calculate the average costs. Read and write operations are
measured separately. Furthermore, it checks how a growing buffer size for the read
and write operations influences the overall costs per read or write. The results are
given in Figures 5.5 to 5.6 on pages 80–81. All results include a simulated call
to the mediator library as described in Section 3.1.4 on page 47. Furthermore, I
simulated a dedicated page-aligned receive and send window between the Linux
OS personality and the file-system service. In a real-world scenario it is sensible
to build a setup like this because otherwise the file-system service might obtain
access to the stack of the Linux application or other memory regions13 I executed
the benchmark with file sizes of 64 KiB and 1 MiB.

From the results, we can observe that the implementations of my Linux OS
personality and my in-memory file system are competitive with Linux for large file
sizes and large buffers. For small workloads the overhead of a system call has a
large share regarding the total time of the operation. If the share of the overhead
of the system calls decreases, which is the case for large buffer sizes on large file
sizes, then my runtime system is equally fast or even outperforms Linux. The
write performance is constantly better than under Linux. The read performance is
constantly slower but the performance approaches that of Linux as the buffer size
increases for large files.

The reason for the better write performance under my runtime system is that the
control flow through my Linux operating system personality models only a small
part of what Linux is capable of. It can be expected that if the complexity of
the Linux OS personality grows over time and control-flow operations increase this
lead against Linux decreases. Furthermore, the implementation of my in-memory
runtime system is not a full UNIX-like file system but a HashMap in memory. This
further improves the lookup speed of certain structures of the in-memory file-system
implementation. Another aspect might be that the allocation mechanism of my file
system performs faster. However, the focus of this benchmark is not the comparison
of file-system implementations but only the mechanism to access files and transfer
data.

13Memory mappings can only be given at the granularity of a page. However, it might happen
that the pointer of a Linux write or read system call points into the middle of the heap or the
stack. In such a case, a malicious service can manipulate the behaviour of a Linux app. Thus,
a dedicated and page aligned send and receive window is a solution to that. In this case, only
the Linux personality needs to be trusted.

80 / 110 CHAPTER 5. EVALUATION

File-System Microbenchmark With a File Size of 64 KiB

16 KiB 32 KiB 64 KiB
5.000

10.000

15.000

20.000

25.000
15

.5
80

11
.4

90

8.
43

2

16
.5

04

14
.2

44

13
.0

46

Write Buffer Size

C
lo

ck
T

ick
s

Hedron
Linux

16 KiB 32 KiB 64 KiB
5.000

10.000

15.000

20.000

25.000

16
.5

53

12
.4

68

8.
89

9

6.
93

1

5.
91

5

5.
47

4

Read Buffer Size

C
lo

ck
T

ick
s

Hedron
Linux

Figure 5.5: File-system microbenchmark against the in-memory file system with
a file size of 64 KiB. The diagram shows the costs of the write op-
erations on the top and the costs of the read operations on the bot-
tom. A lower bar means a shorter execution time and thus a higher
performance/throughput. The costs are influenced by the amount of
read/write system calls required to transfer the whole file size. The
buffer size influences the amount of required system calls. Hedron’s
runtime system outperforms Linux for write operations in any case.
Read operations are slower but the difference decreased with a growing
buffer size.

5.3. PERFORMANCE 81 / 110

File-System Microbenchmark With a File Size of 1 MiB

16 KiB 32 KiB 64 KiB 128 KiB 256 KiB
1

2

3

4

5
·105

3.
1

·1
05

2.
42

·1
05

1.
95

·1
05

1.
71

·1
05

1.
58

·1
05

3.
29

·1
05

3.
06

·1
05

2.
81

·1
05

2.
76

·1
05

2.
7

·1
05

Write Buffer Size

C
lo

ck
T

ick
s

Hedron
Linux

16 KiB 32 KiB 64 KiB 128 KiB 256 KiB
1

2

3

4

5
·105

3.
12

·1
05

2.
44

·1
05

2.
01

·1
05

1.
78

·1
05

1.
66

·1
05

1.
65

·1
05

1.
58

·1
05

1.
44

·1
05

1.
45

·1
05

1.
36

·1
05

Read Buffer Size

C
lo

ck
T

ick
s

Hedron
Linux

Figure 5.6: File-system microbenchmark against the in-memory file system with a
file size of 1 MiB. The diagram shows the costs of the write operations on
the top and the costs of the read operations on the bottom. A lower bar
means a shorter execution time and thus a higher performance/through-
put. The costs are influenced by the amount of read/write system calls
required to transfer the whole file size. The buffer size influences the
amount of required system calls. Hedron’s runtime system outperforms
Linux for write operations in any case. Read operations are constantly
slower but read performance approaches that of Linux as the buffer size
increases for large files.

82 / 110 CHAPTER 5. EVALUATION

5.4 Summary
In this chapter, I evaluated my work against the objectives I set in the introduction.
It shows that the developer productivity is increased by enabling hybrid applications
with Linux as example under Hedron. I showed that IPC costs negatively influences
the performance of foreign system calls compared to native Linux. If the call
itself is expensive, the overhead of the mechanism only has a small share. With a
microbenchmark against the file system I presented that performance is competitive
with native Linux in read and write operations for large file sizes and large buffer
sizes. To be precise, read operations are close to the performance of Linux if the
buffer sizes is higher than 256 KiB. Write operations are constantly faster but this
might change with a more complex file-system implementation.

Related Work 6
This thesis covers the area of software reuse including reuse of existing toolchains
to keep up a high developer productivity. A variety of external research groups,
companies, and individuals came up with different solutions for reuse of software
stacks, applications, and whole operating systems in the last decades. Their solu-
tions differ in details and specific goals while all aim for a common higher objective.
This chapter reviews those designs and how they relate to my thesis.

6.1 VM-based Software Reuse
A prominent example for software reuse is the use of VMs which are mainly relevant
in scenarios where multiple tenants share a common infrastructure. This is useful
when a provider offers infrastructure where multiple tenants share the resources of
multiple compute nodes for an optimal resource utilization regarding energy effi-
ciency, hardware resource minimizing, and good performance. The tenants should
not modify their software in any way and see a world where they are the only
software running on a system. Virtualization enables a strict isolation between
multiple guest operating systems. Para-virtualization can be used to accelerate
the VM. Furthermore, virtualization can be accelerated with hardware-accelerated
virtualization features, such as Intel VT [17]. Hardware-assisted virtualization im-
proves performance but targets the same level of abstraction.

A virtualized environment tricks a software into thinking it owns the full hard-
ware. Thus, it can bootstrap the system and run its own applications. There is
no functional interaction with other guests, hence, every tenant is strictly isolated.
VMs reach binary compatibility by reusing the original kernel in a virtualized en-
vironment.

6.1.1 Reuse Original Operating System
L4Linux [18, 26] (2001) and Xen [2] (2003) are examples for para-virtualization
solutions. Taking Linux as an example, both solutions modified Linux to run on
a virtual architecture, i.e., on virtual hardware. This virtual architecture uses
interfaces provided by either Xen or the L4 runtime environment (L4Re). In the
case of L4Linux, the virtual hardware maps to system services of L4Re [19].

83

84 / 110 CHAPTER 6. RELATED WORK

It is quite difficult to achieve a full functional integration into the existing runtime
environment. Application under L4Linux run on a vCPU. One vCPU executes the
code of Linux and its user applications [21]. If a user application performs an IPC
call to the outside L4Re-world, the vCPU blocks and thus L4Linux is blocked,
which is undesirable. We can solve this with decoupling [22]. Both solutions, Xen
and L4Linux, reach binary compatibility through reuse of the original kernel that
needs modifications for the para-virtualization.

X-Containers [33] (2019) follows an approach called Library OS (libOS). The host
runs a small exokernel whereas the guests applications have a libOS in their address
space. The approach requires no hardware virtualization and reaches binary com-
patibility through the corresponding libOS. Specifically, they reuse Linux’s existing
Xen para-virtualization support. Thus, Linux can run without the need for priv-
ileged mode in user space and be linked as libOS into the container. They patch
binaries so that system calls are replaced by function calls into the corresponding
libOS. Technically, X-Containers reaches binary compatibility the same way as Xen
and L4Linux but the applications are executed with a slightly different model.

The Windows Subsystem for Linux (WSL) [4, 35] is an approach that is more
similar to my work. In WSL 1 Linux is emulated whereas WSL 2 reaches bi-
nary compatibility with a modified para-virtualized Linux kernel [6]. The WSL
(in both versions) aims for a functional integration into the existing runtime envi-
ronment. This means, existing and unmodified Linux application can execute and
access for example the same file system. This allows the usage of tools such as the
GNU Compiler Collection on Microsoft Windows while the code editor might run
as native Microsoft Windows application. Both can operate on the same directory
structure. This is the same functional goal that my work targets.

My work reaches binary compatibility by providing a custom OS emulation layer
instead of using para-virtualization with a modified guest kernel. This is in contrast
to the approaches listed above. Whereas X-Containers, Xen, and L4Linux do not
aim for a full functional integration, the WSL partially enables this with for example
the file system. From a functional point of view, the latter enables a similar user
and developer experience as my work.

6.1.2 Provide Forward Kernel

ELK Herder [29] virtualizes an application with a technique that can be described as
compute kernel or forward kernel (see Section 3.1 on page 39). The main objective
of ELK Herder is to enable fault tolerance by replicating Linux runtime processes.
With ELK Herder a program can run virtualized multiple times and these instances
execute simultaneously. Integrity is guaranteed at certain checkpoints across all
running instances. In each VM, a tiny forward kernel forwards all requests to the
host Linux.

The main objective is to discover hardware-faults. Binary compatibility is
reached because all system calls from the VMs are forwarded to the host kernel.

6.2. SYSTEM-CALL INTERCEPTION/EMULATION 85 / 110

However, this is not an approach that enables reuse of existing software from other
operating system and only targets Linux.

Another example with a forward kernel approach but different goals than
ELK Herder is gVisor [16]. gVisor is a solution that combines the two worlds of
VMs and containers. VMs have a large overhead because they require a dedicated
kernel. Containers are faster but the isolation is no longer done by the hardware
but the software. gVisor tries to build the bridge between these two worlds. It
is a forward kernel (they call it application kernel) that implements some Linux
system calls by itself whereas others are forwarded to the host. This concept is a
trade-off between maintainability costs, hardware-assisted isolation, low overhead,
and performance. System call intensive workloads on gVisor for example come with
a 50% overhead in system call throughput. These costs originate from expensive
VM exits and reentries.

gVisor also aims for isolation from the existing runtime services to allow mul-
tiple tenants on the same hardware while achieving a lower overhead than with
traditional VMs. It also enables benefits of containerized environments. gVisor
reaches binary compatibility by its mixture of the small application kernel, which
implements some system calls by itself, and the forwarding of several system calls
to the host Linux. gVisor only works for Linux which is in contrast to my work
that aims to support all foreign OSs.

6.2 System-Call Interception/Emulation

Fuchsia with starnix [30] (2021) takes an approach that shares the most similarities
with my work. Although Zircon, the kernel of Fuchsia, applies many of the concepts
popularized by microkernels, it does not strive to be minimal. For example, it
includes multiple dozens of system calls [43]. Instead, the architecture of Zircon
enables Fuchsia to reduce the amount of trusted code running in the system to a
few core functions. A RFC from 2021 proposes changes to Fuchsia that allows the
execution of unmodified Linux binaries. They plan to intercept system calls the
same way as I discussed in Section 3.1 on page 39 inside the kernel. If a foreign
system call is recognized, an exception IPC is send to an IPC endpoint. The binary
compatibility is reached by implementing an OS personality called starnix. starnix
fulfills the role of the mediator which I discuss in Section 3.1.4 on page 46. In
my implementation, the roottask takes the role of that mediator. The RFC does
not discuss the possible optimization I proposed in Section 3.1.4 on page 47 but
technically it would be applicable with their architecture.

Zicron shares similarities to Hedron. For example, there exist an exception for
the startup of processes [10]. Thus, starnix handles the startup of processes to set
up the initial CPU state similar to the OS personality in my design.

The WSL in version 1 also intercepts and emulates Linux system calls [4, 35].
Microsoft uses a dedicated Linux interface in front of their kernel. This interface

86 / 110 CHAPTER 6. RELATED WORK

translates Linux system calls to Windows NT system calls. Thus, unlike in WSL2
(discussed above), the support for system calls is limited.

6.3. VISUAL COMPARISON 87 / 110

6.3 Visual Comparison
Table 6.1 categorizes the related work projects I discussed above regarding certain
properties. Each of the solutions mentioned above have in common that they do
not require toolchain modifications for existing software. They are similar to my
work in that regard. The existing differences are shown in the table below:

Functional
Integration

(Para-) vir-
tualization

First-Class
Citizen

Foreign
Apps

Hybrid
Apps

classic VMs
WSL 1
WSL 2
Xen
L4Linux
X-
Containers
gVisor
ELK Herder
Fuchsia with
starnix
Hedron with
hybrid apps
[This Thesis]

Table 6.1: Comparison between existing solutions and my thesis regarding several
characteristics.

By Functional Integration, I mean that the execution model allows the interaction
with existing runtime components, such as the same files. (Para-)virtualization, I
refer to designs that use virtualization features to execute programs. By First-
Class Citizens, I refer to designs that execute programs side-by-side with regular
ones. By Foreign Apps, I classify solutions regarding if they allow the execution of
software programs different to the ones of the host platform. By Hybrid Apps, I
refer to the definition provided in Section 1.2 on page 23 where my work is to my
best knowledge the only existing solution in the field of microkernels.

Future Work 7
In Chapter 3 on page 39, I propose a design where a Protection Domain (PD)
knows whether it is “foreign” or “native”. The control flow for system calls from
foreign PDs works as shown in Figure 3.3 on page 50. To allow hybrid applications
Hedron checks the kind of the PD and uses the Native System Call Toggle (NSCT)
to distinguish native from foreign system calls.

In a next step, I would revoke the changes to the PD object described in Sec-
tion 4.1 on page 57 and only use the NSCT for all PDs. When the runtime system
starts a Hedron-native application then the flag defaults to true. Otherwise, when
a foreign application is started, the flag should default to false. If a system call
is recognized and the flag indicates false then a Foreign Syscall Exception must be
triggered.

Right now, Hedron knows 32 different exceptions for regular PDs. Usually,
these are the regular exceptions from the hardware with their corresponding
offset with two deviations. Exception index NUM_EXC - 1 and exception index
NUM_EXC - 2 are used for special Hedron exceptions namely Recall Exception and
Startup Exception. I suggest adding the new special Foreign Syscall Exception at
index NUM_EXC - 3. Enhancing the existing exception mechanism unifies it with
my proposed design and reduces necessary code changes in Hedron.

In Section 3.3.3 on page 54, I discussed signals for Linux applications and outlined
possible approaches. However, signals are out of scope of this work. It is future
work to find mechanism for Hedron that allow the unblocking of blocked resources,
such as ECs, and a clean release of resources that are no longer in use.

89

Summary and Conclusion 8
In this chapter, I briefly summarize the goals and major objectives of my thesis and
discuss how well I achieved them and what problems, if any, occur and why.

In Section 1.2 on page 23, I presented the goals of this work. My task was to create
a policy-free system-call layer for Hedron that allows competing policies in user
space. This mechanism should enable the execution of unmodified foreign binaries
with Linux as example. Additionally, hybrid applications should be supported.

In Section 3.1 on page 39, I discussed several strategies how to reach binary
compatibility for foreign applications. I decided to use an approach that enables
foreign applications as first-class citizens. This means that they run side-by-side
with native Hedron applications. It is in Hedron’s responsibility to catch foreign
system calls and deliver them to a user-space destination. By reusing existing code
inside Hedron and only minor additions, Hedron can discover if a foreign application
made a foreign system call and forward it to a user space component, i.e., the OS
personality, as exception IPC. This enables the transfer of the CPU state. If the
OS personality replies that request it can alter the CPU state of the caller.

Afterwards, in Section 3.2 on page 49, I discussed strategies to allow native system
calls from foreign applications, i.e., hybrid applications, that are compatible to the
mechanism for foreign applications. I introduced the Native System Call Toggle
(NSCT) flag inside the UTCB header which the hybrid application may use to
mark the next system call as native one.

Chapter 4 on page 57 presented implementation details of my proposed design.
Finally, in Chapter 5 on page 67 I showed that my implementation that follows
my design choices enables the successful execution of several simple Linux binaries.
These binaries may be hybrid. I showed that the costs of foreign system calls are
noticeable and caused by IPC costs. However, if the system call itself is expensive,
such as a large write operation, this overhead is small and my runtime system can
even outperform Linux in several operations.

The source code of my work is provided in the appendix in Section 9.1 on page 93.

91

Appendix 9
9.1 Source Code of Main Contributions
The main contributions of my thesis, i.e., the modifications to Hedron and my run-
time environment, are publicly available on GitHub. The corresponding README
files guide interested readers to successfully build and run everything.

Modifications to Hedron

https://github.com/phip1611/hedron

This repository contains a fork of Hedron that includes relevant changes for my
policy-free system-call layer.

Runtime Environment & Run Scripts

https://github.com/phip1611/diplomarbeit-impl

This repository contains my runtime environment and references my Hedron-fork
as git submodule. It contains several code examples and a convenient setup to
test and play around. The example code can bootstrap several native, hybrid, and
foreign applications. Please refer to the README of those projects.

9.2 Code Examples
This section shows multiple code examples that give the reader an idea about what
kind of foreign and hybrid applications can be executed with the introduced foreign
system-call mechanism for Hedron in Chapter 3 on page 39 and the corresponding
policies implemented in user space described in Chapter 4 on page 57. As my
current implementation only supports static Linux binaries, the code examples
must be linked statically (for example against the musl library). However, this
is a limitation of my runtime environment and not a limitation of the proposed
policy-free system-call layer.

93

https://github.com/phip1611/hedron
https://github.com/phip1611/diplomarbeit-impl

94 / 110 CHAPTER 9. APPENDIX

1 use std::env::args;
2 use std::f64::consts::PI;
3

4 // This binary takes the first argument as radius and calculates
5 // area and circumference of a circle. If no argument is
6 // provided it falls back to 42.
7 fn main() {
8 println!("Hello World from a Rust App compiled for Linux");
9 let mut args = args().skip(1);

10 let radius = args
11 .next()
12 .map(|x| x.parse::<f64>().ok())
13 .flatten()
14 .unwrap_or(42.0);
15 println!("Circle");
16 println!(" Radius ={:6.2}cm", radius);
17 println!(" Area ={:6.2}cm2", PI * radius.powi(2));
18 println!(" Circumference={:6.2}cm", 2.0 * PI * radius);
19

20 let args = std::env::args().collect::<Vec<_»();
21 println!("my args are: {:#?}", args);
22 let envs = std::env::vars().collect::<Vec<_»();
23 println!("my envs are: {:#?}", envs);
24 }

Listing 9.1: Linux application written in Rust to calculate certain metrics of a
circle. It uses Rusts standard library to parse the program arguments
and perform calculation based on them.

9.2. CODE EXAMPLES 95 / 110

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <inttypes.h>
4

5 const uint32_t DIM = 3;
6 int main() {
7 // Two 3*3 matrices on the Heap with values: 0, 1, 2,...
8 uint32_t * matrix1 = malloc(sizeof(uint32_t) * DIM * DIM);
9 uint32_t * matrix2 = malloc(sizeof(uint32_t) * DIM * DIM);

10 for (uint32_t i = 0; i < DIM; i++) {
11 for (uint32_t j = 0; j < DIM; j++) {
12 uint32_t num = i * DIM + j;
13 matrix1[num] = num;
14 matrix2[num] = num;
15 }
16 }
17

18 // Target matrix on Heap; matrix multiplication
19 uint32_t * res_matrix = malloc(sizeof(uint32_t) * DIM * DIM);
20 for (int i = 0; i < DIM; i++) {
21 for (int j = 0; j < DIM; j++) {
22 uint32_t sum = 0;
23 for (int k = 0; k < DIM; k++) {
24 sum += matrix1[i * DIM + k] * matrix2[k * DIM + j];
25 }
26 res_matrix[i * DIM + j] = sum;
27 }
28 }
29

30 // print whole matrix to screen
31 printf("[\n");
32 for (int i = 0; i < DIM; i++) {
33 printf(" [");
34 for (int j = 0; j < DIM; j++) {
35 printf("%u,", res_matrix[i * DIM + j]);
36 }
37 printf("]\n");
38 }
39 printf("]\n");
40 free(matrix1);
41 free(matrix2);
42 free(res_matrix);
43 }

Listing 9.2: A program written in C that multiplies two matrices and prints the
result to the screen.

96 / 110 CHAPTER 9. APPENDIX

1 use std::fs::OpenOptions;
2 use std::io::{Read, Seek, SeekFrom, Write};
3

4 // Simple file operations using Rusts standard library (std::fs).
5 fn main() {
6 println!("Hello World from a Rust App compiled for Linux");
7 let mut file = OpenOptions::new()
8 .create(true)
9 .truncate(true)

10 .read(true)
11 .write(true)
12 .open("/tmp/foobar")
13 .unwrap();
14 let write_msg = "Hello World; it works!!";
15 file.write_all(write_msg.as_bytes()).unwrap();
16 file.seek(SeekFrom::Start(0)).unwrap();
17 let mut read_msg = String::new();
18 file.read_to_string(&mut read_msg).unwrap();
19 assert_eq!(write_msg, read_msg);
20 println!("File content is: '{}'", read_msg);
21 }

Listing 9.3: Linux application that uses Rusts standard library (std::fs) to per-
form basic file operations.

9.3. ADDITIONAL IMPLEMENTATION DETAILS 97 / 110

1 fn main() {
2 // Linux: write()
3 println!("Hello, world!");
4

5 // Check Env var; only execute under Hedron
6 if var("LINUX_UNDER_HEDRON").is_ok() {
7 // Linux: write()
8 println!("This Linux binary executes under Hedron");
9 // Hedron: create_pd()

10 let pd_obj = libhrstd::PdObject::create_pd(/*...*/);
11 // ...
12 } else {
13 // Linux: write()
14 println!("This Linux binary executes under native Linux");
15 }
16 }

Listing 9.4: Hybrid Linux application written in Rust. If it runs under Hedron, it
also performs Hedron-native system calls. They are abstracted behind
the libhrstd library.

9.3 Additional Implementation Details
As discussed in Section 1.3 on page 24, the runtime system is not part of the scien-
tific aspect of this work. In this section, I would like to present further challenges
I had to solve during my implementation of the runtime system.

Roottask and Userland Tarball

When the roottask starts execution, it sets up its stack, its heap allocator, logging
facilities, and the runtime services that live inside it. This includes the in-memory
file-system service, the allocator service, and the logger service. Furthermore, it
initializes the process manager.

To start further programs the roottask needs to access the files that include the
machine code somehow. One possibility is to use Multiboot boot modules. During
the implementation I figured out that the build setup as well as the code become
simpler if I only provide one Multiboot boot module that contains all files. I decided
to use a tarball (a Tar-archive) for that.

The Multiboot-compliant bootloader provides the tarball to Hedron and Hedron
makes it accessible by the roottask. Figure 9.1 on the next page shows this. To
access the tarball’s data, the Hypervisor Information Page (HIP) is searched for
Multiboot modules. If the module with the tarball is found, the roottask maps itself

98 / 110 CHAPTER 9. APPENDIX

the memory to that module. Afterwards, the roottask can parse the tarball and
extract the files. The tarball contains a flat hierarchy of ELF files. The file names
the roottask expects in there are currently hard-coded. However, the tarball can
contain a configuration file that includes what programs should be bootstrapped
and how they are called in the future.

Figure 9.1: The figure shows the bootstrapping flow of Hedron to the running
user apps. It starts with the hardware on the bottom. It shows that
the Multiboot bootloader passes payload to Hedron as Multiboot boot
modules. Hedron stores references to these boot modules inside the
Hypervisor Information Page (HIP) so the roottask can find the memory
of them. The roottask can then map itself the corresponding memory
region and finally read the userland tarball.

9.4. SUPPORTED LINUX SYSTEM CALLS 99 / 110

9.4 Supported Linux System Calls
The following list shows the Linux system calls that my runtime environment (in-
troduced in Chapter 4 on page 57) currently supports. Not all Linux system calls
are implemented with 100% feature completeness but still have enough functional-
ity to enable the successful execution of various simple Linux programs written in
C and Rust. For now, this is only a small subset of Linux system calls. This is no
limitation by my mechanism.

• arch_prctl

• brk

• close

• fcntl

• fstat

• ioctl

• lseek

• madvise

• mmap

• munmap

• open

• poll

• read

• rtsigaction

• rtsigprocmask

• set_tid_address

• signalstack

• unlink

• write

• write_v

100 / 110 CHAPTER 9. APPENDIX

9.5 Side Contributions
During my work on this thesis and the implementation much code had to be written.
In this process, I have created a few open source libraries and contributed them to
the Rust ecosystem because there were no satisfying solutions yet. linux-libc-auxv1

is a library to build and parse the initial Linux stack layout. tar-no-std2 is a library
that can extract files from tarballs in contexts without a standard environment and
without heap allocations. Simple Chunk Allocator3 is a combination of a next-fit
and best-fit heap allocator for “no_std” Rust programs that uses static memory as
backing memory. I use it in my roottask.

Furthermore, I made smaller contributions to third party open source Rust
projects, such as https://crates.io/crates/elf_rs.

I would also like to thank Adam Lackorzynski from Kernkonzept4. After a per-
sonal discussion in October 2021, Adam upstreamed an important patch5 to the
QEMU project that significantly improved my developer experience during the en-
gineering of the runtime environment. The patch brings major improvements to
the startup time of QEMU when large files (more than two MiB) are used with
QEMUs multiboot functionality. It is included in QEMU 6.2 and above6.

1crates.io: https://crates.io/crates/linux-libc-auxv
GitHub: https://github.com/phip1611/linux-libc-auxv

2crates.io: https://crates.io/crates/tar-no-std
GitHub: https://github.com/phip1611/tar-no-std

3crates.io: https://crates.io/crates/simple-chunk-allocator
GitHub: https://github.com/phip1611/simple-chunk-allocator

4https://www.kernkonzept.com/
5https://gitlab.com/qemu-project/qemu/-/commit/48972f8cad24eb4462c97ea68003e2dd35be0444
6https://gitlab.com/qemu-project/qemu/-/commits/v6.2.0

https://crates.io/crates/elf_rs
https://crates.io/crates/linux-libc-auxv
https://github.com/phip1611/linux-libc-auxv
https://crates.io/crates/tar-no-std
https://github.com/phip1611/tar-no-std
https://crates.io/crates/simple-chunk-allocator
https://github.com/phip1611/simple-chunk-allocator
https://www.kernkonzept.com/
https://gitlab.com/qemu-project/qemu/-/commit/48972f8cad24eb4462c97ea68003e2dd35be0444
https://gitlab.com/qemu-project/qemu/-/commits/v6.2.0

Glossary

Most of these terms are explained thoroughly in Chapter 2 on page 25. The glossary
only gives a brief overview.

Hedron-specific Terms
• Capability: The granted ability of a PD to access a certain resource, such

as a memory page or a kernel object.

• Capability Selector: A numeric index into the capability space of a PD.
Usage is similar to a file descriptor in UNIX.

• Execution Context (EC): A kernel object similar to a thread in UNIX.
The entity that receives CPU time. There are two relevant kinds: global ECs
and local ECs.

– Global Execution Context: An EC with a dedicated SC, i.e., time
slice. Used to execute main program functionality. Same role as a thread
in UNIX.

– Local Execution Context: An EC without a dedicated time slice is
never scheduled automatically. Instead, PTs are attached to it and it
runs in the time slice of the caller when such a PT is called.

• Foreign Application: Application with non-Hedron-native system call in-
terface (e.g. Linux application).

• Foreign System Call: System calls triggered by foreign applications.

• Hybrid Application: A foreign application that contains a portion of
Hedron-native system calls in addition. The application therefore can use
two system-call ABIs simultaneously.

• Hypervisor Information Page (HIP): A page provided by Hedron for the
roottask that holds relevant information about the system.

• Kernel Object: A data structure, usually with a mutable state, that the
kernel manages to fulfill the promised functionality. It is the base for certain
programming primitives of the system.

101

102 / 110 GLOSSARY

• Message Transfer Descriptor (MTD): Hardware-dependent word-width
bitmap that specifies what data should be stored into or loaded from the
UTCB when an exception occurs or is replied.

• Native System Call Toggle (NSCT): A flag I introduced in the UTCB
header that tells Hedron a system call is a native one even if it comes from a
foreign application.

• Protection Domain (PD): A kernel object used as resource container to
manage memory capabilities, kernel object capabilities, and port I/O capa-
bilities. A thin abstraction that is similar to a process in UNIX.

• Portal (PT): A kernel object used as IPC entry point. Bound to a local
EC. Specifies the instruction pointer that is loaded into register rip after a
portal call.

• Portal Call: An IPC call to a PT with the intention to request the desired
functionality, e.g. logging a message or allocating memory.

• Portal Context (PTCtx): A property in implementation of my runtime
system to retrieve contextual information about a portal that was called. For
example, if the portal handles exceptions, service calls, or foreign system calls.

• Scheduling Context (SC): A time slice for a global EC with a priority.
One SC belongs to exactly one global EC.

• Semaphore(SM): A kernel object used for (cross core) synchronization. Ef-
fectively, this is an one bit IPC.

• User Thread Control Block: Special memory region that is pinned inside
the kernel and used to transfer data for kernel-to-user or user-to-user IPC. It
has the size of a page (4096 bytes).

Other Terms
• Application Binary Interface: An API on binary level, i.e., without high

level bindings. The API that a functionality has after the compilation step.

• Application Programming Interface (API): A software interface that
exports some service or functionality in a well-defined format.

• Binary Large Object (BLOB): A large object mapped 1:1 to memory.
For example, a file.

• Boot Module: A Multiboot boot module, or also called a GRUB boot mod-
ule, is a Binary Large Object (BLOB) in memory that is passed to a loaded
application, such as a kernel, by the bootloader.

103 / 110

• Dynamic Binary: Means that a binary has dependencies to one or multiple
dynamic library and a program loader needs to provide them during load
time.

• Inter-process communication (IPC): An exchange of data between dif-
ferent processes.

• First-Class Citizens: First-class citizens in the context of this work de-
scribes applications that run on an equal level to native applications.

• Foreign Function Interface (FFI): A mechanism by which a program
written in one programming language can call routines or make use of services
written in another.

• Kernel space: All code running in privileged mode on hardware. On
x86_64, this refers to code running in ring 0.

• Hypervisor: Sometimes used as synonym of a VMM. In microkernel contexts
this refers to the kernel space part of the virtualization infrastructure.

• L4Linux: Modified Linux kernel that runs on an L4 microkernel as user-
space process.

• libc: Originally developed as standard library for programs written in C on
UNIX systems. Today the de-facto standard API on Linux distributions and
other UNIX-like systems to the kernel. Examples are glibc and musl.

• Library OS (libOS): A concept where the functionality expected from the
OS system call interface is packaged as library and linked into the address
space of a program. System calls are replaced with function calls into the
corresponding libOS.

• Microhypervisor: A microkernel with the main goal of enabling virtualized
environments on the given hardware platform.

• Microkernel: A kernel with minimal code running in privileged mode on
the hardware.

• Pinned Memory: Pinned memory has a fixed location and is always
mapped and present.

• POSIX: A subset of the UNIX functionality specified by the IEEE.

• Process (UNIX/Windows): Encapsulates an address space with multiple
threads. The abstraction used to run programs.

• Static Binary: Means that a binary has all relevant libraries included and
does not require the program loader to provide dynamic libraries during load
time.

104 / 110 GLOSSARY

• Thread (UNIX/Windows): The unit of execution. One thread belongs
to one process. It knows its current instruction pointer and its own stack.
Despite the stack, all memory is shared with other threads within the same
process.

• Toolchain: A combination of tools that in combination produce usable bi-
naries or libraries. Includes the compiler, the linker, and mandatory runtime
libraries. It depends on the programming language, the ecosystem of the
programming language, the target hardware platform, and the target OS, as
well as the host OS on which the toolchain is executed.

• UNIX: UNIX was an OSs developed in the 1970s which principles live until
today in many OSs and APIs. The principles are also known as the UNIX
philosophy.

• User space: All code running in user mode (non privileged) on hardware.
On x86_64 this refers to code running in ring 3.

• Userland: The entirety of software running in user space that fulfills the
promised functionality of the software system. Typically, this includes service
processes, such as the file-system service, the network stack, and other user-
space components.

• Virtual Machine Monitor (VMM): A VMM is a component that emu-
lates the necessary environment for a VM. Sometimes this is used as synonym
for a Hypervisor. In microkernel contexts this refers to the userland part of
the virtualization infrastructure.

Acronyms

ABI Application Binary Interface.

API Application Programming Interface.

AuxV Auxiliary Vector.

BLOB Binary Large Object.

EC Execution Context.

ELF Executable and Linking Format.

GUI Graphical User Interface.

HIP Hypervisor Information Page.

IDE Integrated Development Environment.

IPC Inter-process Communication.

LAPIC Local Advanced Programmable Interrupt Controller.

MTD Message Transfer Descriptor.

NSCT Native System Call Toggle.

OS Operating System.

PD Protection Domain.

PT Portal.

RTT Round-Trip Time.

SC Scheduling Context.

SLOC Source Lines of Code.

105

106 / 110 Acronyms

SM Semaphore.

UTCB User Thread Control Block.

VM Virtual Machine.

Bibliography

[1] [PATCH v13 00/10] NTFS read-write driver GPL implementation by Paragon
Software - Konstantin Komarov. url: https://lore.kernel.org/lkml/
20201120160944.1629091-1-almaz.alexandrovich@paragon-software.
com/ (visited on Jan. 3, 2022).

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. “Xen and the art
of virtualization”. In: ACM SIGOPS Operating Systems Review 37.5 (Oct.
2003), pp. 164–177. issn: 0163-5980. doi: 10.1145/1165389.945462. url:
https://doi.org/10.1145/1165389.945462 (visited on Dec. 23, 2021).

[3] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe.
“A fork() in the road”. In: Proceedings of the Workshop on Hot Topics in
Operating Systems. HotOS ’19. New York, NY, USA: Association for Com-
puting Machinery, 2019, pp. 14–22. isbn: 978-1-4503-6727-1. doi: 10.1145/
3317550.3321435. url: https://doi.org/10.1145/3317550.3321435
(visited on Mar. 24, 2022).

[4] benhillis. WSL Release Notes. de-de. url: https://docs.microsoft.com/
de-de/windows/wsl/release-notes (visited on Jan. 2, 2022).

[5] Jonathan Cobert. Emulating Windows system calls in Linux [LWN.net]. en-
US. June 2020. url: https: // lwn. net/ Articles/ 824380/ (visited on
Dec. 30, 2021).

[6] Comparing WSL 1 and WSL 2. url: https://docs.microsoft.com/en-
us/windows/wsl/compare-versions (visited on Feb. 15, 2022).

[7] David Drysdale. How programs get run: ELF binaries [LWN.net]. Feb. 2015.
url: https://lwn.net/Articles/631631/ (visited on Jan. 3, 2022).

[8] Kevin Elphinstone and Gernot Heiser. “From L3 to SeL4 What Have We
Learnt in 20 Years of L4 Microkernels?” In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. SOSP ’13. Farminton,
Pennsylvania: Association for Computing Machinery, 2013, pp. 133–150. isbn:
9781450323888. doi: 10.1145/2517349.2522720. url: https://doi.org/
10.1145/2517349.2522720.

[9] Sebastian Eydam. Mitigating Processor Vulnerabilities by Restructuring the
Kernel Address Space. url: https://fosdem.org/2022/schedule/event/
seydam/ (visited on Mar. 27, 2022).

107

https://lore.kernel.org/lkml/20201120160944.1629091-1-almaz.alexandrovich@paragon-software.com/
https://lore.kernel.org/lkml/20201120160944.1629091-1-almaz.alexandrovich@paragon-software.com/
https://lore.kernel.org/lkml/20201120160944.1629091-1-almaz.alexandrovich@paragon-software.com/
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/3317550.3321435
https://doi.org/10.1145/3317550.3321435
https://doi.org/10.1145/3317550.3321435
https://docs.microsoft.com/de-de/windows/wsl/release-notes
https://docs.microsoft.com/de-de/windows/wsl/release-notes
https://lwn.net/Articles/824380/
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://lwn.net/Articles/631631/
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/2517349.2522720
https://fosdem.org/2022/schedule/event/seydam/
https://fosdem.org/2022/schedule/event/seydam/

108 / 110 Bibliography

[10] Fuchsia Exception Handling. url: https://fuchsia.dev/fuchsia-src/
concepts/kernel/exceptions (visited on Feb. 15, 2022).

[11] Genode. url: https://genode.org/ (visited on Feb. 10, 2022).
[12] GitHub - Cyberus Technology - The Hedron Microhypervisor. url: https:

//github.com/cyberus-technology/hedron (visited on Jan. 20, 2022).
[13] Robert P. Goldberg. “Survey of virtual machine research”. In: Computer 7.6

(June 1974). Conference Name: Computer, pp. 34–45. issn: 1558-0814. doi:
10.1109/MC.1974.6323581.

[14] Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, David Hutchison, Takeo
Kanade, Josef Kittler, Jon M Kleinberg, Friedemann Mattern, John C
Mitchell, Moni Naor, Oscar Nierstrasz, C Pandu Rangan, and Bernhard Stef-
fen. “Lecture Notes in Computer Science”. en. In: (2016), p. 1228.

[15] Guru. 15 Years Old Linux Bug Let Attackers Gain Admin Privileges. Cyber
Security News. Mar. 16, 2021. url: https://cybersecuritynews.com/15-
years-old-linux-bug/ (visited on Jan. 20, 2022).

[16] gVisor. url: https://gvisor.dev/ (visited on Jan. 24, 2022).
[17] Intel® Virtualization Technology (VT) in Converged Application Platforms.

en. 2007. url: https : / / www . intel . com / content / dam / www / public /
us / en / documents / white - papers / virtualization - tech - converged -
application-platforms-paper.pdf (visited on Jan. 3, 2022).

[18] L4Linux. url: https://l4linux.org/ (visited on Jan. 2, 2022).
[19] L4Re. url: https://l4re.org/ (visited on Feb. 10, 2022).
[20] Adam Lackorzynski and Alexander Warg. “Taming subsystems: capabilities

as universal resource access control in L4”. In: IIES ’09. 2009. doi: 10.1145/
1519130.1519135.

[21] Adam Lackorzynski, Carsten Weinhold, and Hermann Härtig. “Combining
Predictable Execution with Full-Featured Commodity Systems”. In: (), p. 6.

[22] Adam Lackorzynski, Carsten Weinhold, and Hermann Härtig. “Decoupled:
Low-Effort Noise-Free Execution on Commodity Systems”. In: Proceedings
of the 6th International Workshop on Runtime and Operating Systems for
Supercomputers. ROSS ’16. New York, NY, USA: Association for Computing
Machinery, June 1, 2016, pp. 1–8. isbn: 978-1-4503-4387-9. doi: 10.1145/
2931088.2931095. url: https://doi.org/10.1145/2931088.2931095
(visited on Feb. 26, 2022).

[23] Jochen Liedtke. “On µ-kernel construction”. In: Symposium on Operating Sys-
tem Principles. ACM, 1995.

[24] Robert Love. Linux System Programming [Book]. Jan. 1, 2007. isbn: 978-
0-596-00958-8. url: https://www.oreilly.com/library/view/linux-
system-programming/0596009585/ch01.html (visited on Feb. 8, 2022).

https://fuchsia.dev/fuchsia-src/concepts/kernel/exceptions
https://fuchsia.dev/fuchsia-src/concepts/kernel/exceptions
https://genode.org/
https://github.com/cyberus-technology/hedron
https://github.com/cyberus-technology/hedron
https://doi.org/10.1109/MC.1974.6323581
https://cybersecuritynews.com/15-years-old-linux-bug/
https://cybersecuritynews.com/15-years-old-linux-bug/
https://gvisor.dev/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-tech-converged-application-platforms-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-tech-converged-application-platforms-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-tech-converged-application-platforms-paper.pdf
https://l4linux.org/
https://l4re.org/
https://doi.org/10.1145/1519130.1519135
https://doi.org/10.1145/1519130.1519135
https://doi.org/10.1145/2931088.2931095
https://doi.org/10.1145/2931088.2931095
https://doi.org/10.1145/2931088.2931095
https://www.oreilly.com/library/view/linux-system-programming/0596009585/ch01.html
https://www.oreilly.com/library/view/linux-system-programming/0596009585/ch01.html

Bibliography 109 / 110

[25] Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson.
The Design and Implementation of the FreeBSD Operating System. Google-
Books-ID: aY1pBAAAQBAJ. Addison Wesley, Aug. 2014. 926 pp. isbn: 978-
0-321-96897-5.

[26] Frank Mehnert, Michael Hohmuth, Sebastian Schönberg, and Hermann Här-
tig. “RTLinux with Address Spaces”. In: (), p. 5.

[27] Musl design concepts. url: https : / / wiki . musl - libc . org / design -
concepts.html (visited on Mar. 24, 2022).

[28] OpenBSD system-call-origin verification [LWN.net]. url: https://lwn.net/
Articles/806776/ (visited on Dec. 30, 2021).

[29] Florian Pester. “ELK Herder - Replicating Linux Processes with Virtual Ma-
chines”. MA thesis. Technische Universität Dresden, Feb. 2014.

[30] RFC-0082: Running unmodified Linux programs on Fuchsia. en. Feb. 2021.
url: https://fuchsia.dev/fuchsia-src/contribute/governance/rfcs/
0082_starnix (visited on Jan. 2, 2022).

[31] L. Sha, R. Rajkumar, and J.P. Lehoczky. “Priority inheritance protocols: an
approach to real-time synchronization”. In: IEEE Transactions on Comput-
ers 39.9 (Sept. 1990). Conference Name: IEEE Transactions on Computers,
pp. 1175–1185. issn: 1557-9956. doi: 10.1109/12.57058.

[32] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. “EROS: a
fast capability system”. In: ACM SIGOPS Operating Systems Review 33.5
(1999), pp. 170–185. issn: 0163-5980. doi: 10.1145/319344.319163. url:
https://doi.org/10.1145/319344.319163 (visited on Feb. 7, 2022).

[33] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. “X-Containers:
Breaking Down Barriers to Improve Performance and Isolation of Cloud-
Native Containers”. In: Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’19. New York, NY, USA: Association for Computing Ma-
chinery, Apr. 2019, pp. 121–135. isbn: 978-1-4503-6240-5. doi: 10.1145/
3297858.3304016. url: https://doi.org/10.1145/3297858.3304016
(visited on Aug. 5, 2021).

[34] signal(7) - Linux manual page. url: https://man7.org/linux/man-pages/
man7/signal.7.html (visited on Jan. 7, 2022).

[35] Prateek Singh. “Getting Started with WSL”. en. In: Learn Windows Subsys-
tem for Linux: A Practical Guide for Developers and IT Professionals. Ed. by
Prateek Singh. Berkeley, CA: Apress, 2020, pp. 1–17. isbn: 978-1-4842-6038-
8. doi: 10.1007/978-1-4842-6038-8_1. url: https://doi.org/10.1007/
978-1-4842-6038-8_1 (visited on Dec. 23, 2021).

https://wiki.musl-libc.org/design-concepts.html
https://wiki.musl-libc.org/design-concepts.html
https://lwn.net/Articles/806776/
https://lwn.net/Articles/806776/
https://fuchsia.dev/fuchsia-src/contribute/governance/rfcs/0082_starnix
https://fuchsia.dev/fuchsia-src/contribute/governance/rfcs/0082_starnix
https://doi.org/10.1109/12.57058
https://doi.org/10.1145/319344.319163
https://doi.org/10.1145/319344.319163
https://doi.org/10.1145/3297858.3304016
https://doi.org/10.1145/3297858.3304016
https://doi.org/10.1145/3297858.3304016
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://doi.org/10.1007/978-1-4842-6038-8_1
https://doi.org/10.1007/978-1-4842-6038-8_1
https://doi.org/10.1007/978-1-4842-6038-8_1

110 / 110 Bibliography

[36] Udo Steinberg and Bernhard Kauer. “NOVA: A Microhypervisor-Based Se-
cure Virtualization Architecture”. In: Proceedings of the 5th European Confer-
ence on Computer Systems. EuroSys ’10. Paris, France: Association for Com-
puting Machinery, 2010, pp. 209–222. isbn: 9781605585772. doi: 10.1145/
1755913.1755935. url: https://doi.org/10.1145/1755913.1755935.

[37] System V ABI: x86 psABIs / x86-64 psABI. url: https://gitlab.com/x86-
psABIs/x86-64-ABI (visited on Jan. 20, 2022).

[38] Andrew Stuart Tanenbaum. Modern Operating Systems, 4th Edition. isbn:
978-0-13-359162-0. url: https://www.pearson.com/content/one-dot-
com/one-dot-com/us/en/higher-education/program.html (visited on
Jan. 20, 2022).

[39] Linus Torvalds. GitHub: torvalds/linux. original-date: 2011-09-04T22:48:12Z.
Sept. 2021. url: https : / / github . com / torvalds / linux / blob /
35776f10513c0d523c5dd2f1b415f642497779e2 / include / linux /
syscalls.h#L132 (visited on Sept. 13, 2021).

[40] Usage share of operating systems. de. Page Version ID: 1042708909. Sept.
2021. url: https://en.wikipedia.org/w/index.php?title=Usage_
share _ of _ operating _ systems & oldid = 1042708909 (visited on Sept. 8,
2021).

[41] Jack Wallen. Linux kernel 5.15: NTFS support gets a significant boost. en.
url: https://www.techrepublic.com/article/ntfs-support-gets-a-
significant-boost-in-linux-kernel-5-15/ (visited on Jan. 3, 2022).

[42] Ethan G Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. “The True Cost of Containing: A
gVisor Case Study”. In: (), p. 6. url: https://www.usenix.org/system/
files/hotcloud19-paper-young.pdf.

[43] Zicron System Calls. url: https : / / fuchsia . dev / fuchsia - src /
reference/syscalls (visited on Mar. 29, 2022).

https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/1755913.1755935
https://gitlab.com/x86-psABIs/x86-64-ABI
https://gitlab.com/x86-psABIs/x86-64-ABI
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://github.com/torvalds/linux/blob/35776f10513c0d523c5dd2f1b415f642497779e2/include/linux/syscalls.h#L132
https://github.com/torvalds/linux/blob/35776f10513c0d523c5dd2f1b415f642497779e2/include/linux/syscalls.h#L132
https://github.com/torvalds/linux/blob/35776f10513c0d523c5dd2f1b415f642497779e2/include/linux/syscalls.h#L132
https://en.wikipedia.org/w/index.php?title=Usage_share_of_operating_systems&oldid=1042708909
https://en.wikipedia.org/w/index.php?title=Usage_share_of_operating_systems&oldid=1042708909
https://www.techrepublic.com/article/ntfs-support-gets-a-significant-boost-in-linux-kernel-5-15/
https://www.techrepublic.com/article/ntfs-support-gets-a-significant-boost-in-linux-kernel-5-15/
https://www.usenix.org/system/files/hotcloud19-paper-young.pdf
https://www.usenix.org/system/files/hotcloud19-paper-young.pdf
https://fuchsia.dev/fuchsia-src/reference/syscalls
https://fuchsia.dev/fuchsia-src/reference/syscalls

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Goals
	Scope
	Code Examples

	Technical Background
	Operating System and Runtime Environment
	Different Kernel Architectures
	Monolithic Kernels
	Microkernels
	Comparison of Microkernels and Monolithic Kernels

	Hedron Microhypervisor
	Capabilities
	Functionality Inside Kernel Space
	Kernel Objects
	IPC and the UTCB

	Roottask and Runtime Environment
	Application Binary Interface (ABI)
	System Call ABI
	How Linux Runs Binaries
	Initial Linux Stack Layout
	Signals in Linux

	Static and Dynamic Binaries
	The Rust Programming Language
	Summary

	Design
	Enabling Foreign Applications
	Reach Binary Compatibility
	Modifications to the PD-Object in Hedron
	Handling Foreign System Calls in User Space
	Need for Mediators
	Implications and Limitations for Foreign Applications

	Enabling Hybrid Applications
	Identify Hedron System Calls from Foreign Applications
	Implications and Limitations for Hybrid Applications

	Emulating a Relevant Portion of Linux
	Important System Calls
	Constructing the Initial Linux Stack Layout
	Sending Signals

	Summary

	Implementation
	Changes To Hedron
	Runtime System
	Well-Known Runtime Services
	In-Memory File-System Service
	Process Management
	Identifying the Origin of Portal Calls

	Handle Foreign System Calls
	Hybrid Parts in Foreign Application
	Communication Path: Native vs Foreign
	Implementation Challenges
	Breaking Changes to Hedron API
	Summary

	Evaluation
	Functionality and Reliability
	Developer Productivity
	Scope
	Approach A: Providing a POSIX Compatibility Layer
	Approach B: Developing ``Non-Standard'' Software
	Comparison to My Presented Work

	Performance
	Pure System-Call Performance
	PD-internal and Cross-PD IPC Performance
	Foreign System-Call Performance
	File-System Microbenchmark

	Summary

	Related Work
	VM-based Software Reuse
	Reuse Original Operating System
	Provide Forward Kernel

	System-Call Interception/Emulation
	Visual Comparison

	Future Work
	Summary and Conclusion
	Appendix
	Source Code of Main Contributions
	Code Examples
	Additional Implementation Details
	Supported Linux System Calls
	Side Contributions

	Glossary
	Hedron-specific Terms
	Other Terms

	Acronyms
	Bibliography

